【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知向量 =(2sinA,cos(A﹣B)), =(sinB,﹣1),且 = .
(Ⅰ)求角C的大。
(Ⅱ)若 ,求b﹣a的取值范圍.
【答案】解:(Ⅰ)由 = ,得 ,
,
∴ ,即 ,
∵0<C<π,
∴ .
(Ⅱ)∵ ,且 ,
∴ ,
∴a=2sinA,b=2sinB.
∴b﹣a=2sinB﹣2sinA=
= =
= ,
∵ ,
∴ ,
∴ ,
∴
【解析】(Ⅰ)由 = ,得 ,化簡可得 ,結(jié)合范圍0<C<π,即可求C的值.(Ⅱ)由正弦定理可得a=2sinA,b=2sinB.從而可得b﹣a= ,由 ,可得 /span> ,利用余弦函數(shù)的圖象和性質(zhì)即可解得b﹣a的范圍.
【考點精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;.
科目:高中數(shù)學 來源: 題型:
【題目】目前北方空氣污染越來越嚴重,某大學組織學生參加環(huán)保知識競賽,從參加學生中抽取40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖,若從成績是80分以上(包括80分)的學生中選兩人,則他們在同一分數(shù)段的概率為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的焦點在軸上,離心率為,拋物線的焦點在軸上, 的中心和的頂點均為原點,點在上,點在上,
(1)求曲線, 的標準方程;
(2)請問是否存在過拋物線的焦點的直線與橢圓交于不同兩點,使得以線段為直徑的圓過原點?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn滿足2Sn=3an﹣1,其中n∈N* .
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設anbn= ,求數(shù)列{bn}的前n項和為Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解甲、乙兩校高三年級學生某次期末聯(lián)考地理成績情況,從這兩學校中分別隨機抽取30名高三年級的地理成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:
(Ⅰ)若乙校高三年級每位學生被抽取的概率為0.15,求乙校高三年級學生總?cè)藬?shù);
(Ⅱ)根據(jù)莖葉圖,分析甲、乙兩校高三年級學生在這次聯(lián)考中地理成績;
(Ⅲ)從樣本中甲、乙兩校高三年級學生地理成績不及格(低于60分為不及格)的學生中隨機抽取2人,求至少抽到一名乙校學生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,F(xiàn)1 , F2分別為橢圓 + =1(a>b>0)的左、右焦點,頂點B的坐標為(0,b),連接BF2并延長交橢圓于點A,過點A作x軸的垂線交橢圓于另一點C,連接F1C.
(1)若點C的坐標為( , ),且BF2= ,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U為R,集合A={x|0<x≤2},B={x|x<-3或x>1}.
求:(1)A∩B;(2)(UA)∩(UB);(3)U(A∪B).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列是等比數(shù)列,下列命題正確的個數(shù)為( )
① 、均為等比數(shù)列; ②成等差數(shù)列;
③、成等比數(shù)列; ④、均為等比數(shù)列
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com