【題目】為了解甲、乙兩校高三年級(jí)學(xué)生某次期末聯(lián)考地理成績(jī)情況,從這兩學(xué)校中分別隨機(jī)抽取30名高三年級(jí)的地理成績(jī)(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:
(Ⅰ)若乙校高三年級(jí)每位學(xué)生被抽取的概率為0.15,求乙校高三年級(jí)學(xué)生總?cè)藬?shù);
(Ⅱ)根據(jù)莖葉圖,分析甲、乙兩校高三年級(jí)學(xué)生在這次聯(lián)考中地理成績(jī);
(Ⅲ)從樣本中甲、乙兩校高三年級(jí)學(xué)生地理成績(jī)不及格(低于60分為不及格)的學(xué)生中隨機(jī)抽取2人,求至少抽到一名乙校學(xué)生的概率.
【答案】解:( I)因?yàn)槊课煌瑢W(xué)被抽取的概率均為0.15,則高三年級(jí)學(xué)生總數(shù)
( I I)由莖葉圖可知甲校有22位同學(xué)分布在60至80之間,乙校也有22位同學(xué)分布在70至80之間,乙校的總體成績(jī)分布下沉且較集中即成績(jī)的平均數(shù)較大,方差較。,乙校學(xué)生的成績(jī)較好.
(III)由莖葉圖可知,甲校有4位同學(xué)成績(jī)不及格,分別記為:1、2、3、4;乙校有2位同學(xué)成績(jī)不及格,分別記為:5、6.則從兩校不及格的同學(xué)中隨機(jī)抽取兩人有如下可能:(1,2)、(13)、(1,4)、(1,5)、(1,6)、(2,3)、(2,4)、(2,5)、(2,6)、(3,4)、(3,5)、(3,6)、(4,5)、(4,6)、(5,6),總共有15個(gè)基本事件.其中,乙校包含至少有一名學(xué)生成績(jī)不及格的事件為A,則A包含9個(gè)基本事件,如下:(1,5)、(1,6)、(2,5)、(2,6)、(3,5)、(3,6)、(4,5)、(4,6)、(5,6).
所以,
【解析】( I)利用等可能事件的概率,直接高三年級(jí)學(xué)生總數(shù).( II)利用莖葉圖甲校有22位,乙校有22位,判斷成績(jī)的平均數(shù)較大,方差較。玫浇Y(jié)果.(III)甲校有4位同學(xué)成績(jī)不及格,分別記為:1、2、3、4;乙校有2位同學(xué)成績(jī)不及格,分別記為:5、6.列出從兩校不及格的同學(xué)中隨機(jī)抽取兩人的所有基本事件.乙校包含至少有一名學(xué)生成績(jī)不及格的事件為A,列出A包含9個(gè)基本事件,然后求解概率.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用莖葉圖,掌握莖葉圖又稱(chēng)“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名運(yùn)動(dòng)員的5次測(cè)試成績(jī)?nèi)缦聢D所示:
甲 | 莖 | 乙 |
5 7 | 1 | 6 8 |
8 8 2 | 2 | 3 6 7 |
設(shè)s1 , s2分別表示甲、乙兩名運(yùn)動(dòng)員測(cè)試成績(jī)的標(biāo)準(zhǔn)差, 分別表示甲、乙兩名運(yùn)動(dòng)員測(cè)試成績(jī)的平均數(shù),則有( )
A. ,s1<s2
B. ,s1>s2
C. ,s1>s2
D. ,s1=s2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當(dāng)時(shí),,若有三個(gè)零點(diǎn),則實(shí)數(shù)的取值集合是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是直線x=4上一動(dòng)點(diǎn),以P為圓心的圓Γ經(jīng)定點(diǎn)B(1,0),直線l是圓Γ在點(diǎn)B處的切線,過(guò)A(﹣1,0)作圓Γ的兩條切線分別與l交于E,F(xiàn)兩點(diǎn).
(1)求證:|EA|+|EB|為定值;
(2)設(shè)直線l交直線x=4于點(diǎn)Q,證明:|EB||FQ|=|BF|EQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①第二象限角比第一象限角大;②設(shè)是第二象限角,則;③三角形的內(nèi)角是第一象限角或第二象限角;④函數(shù)是最小正周期為的周期函數(shù);⑤在△ABC中,若,則A>B.其中正確的是___________ (寫(xiě)出所有正確說(shuō)法的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知向量 =(2sinA,cos(A﹣B)), =(sinB,﹣1),且 = .
(Ⅰ)求角C的大小;
(Ⅱ)若 ,求b﹣a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用另一種形式表示下列集合:
(1){絕對(duì)值不大于3的整數(shù)};
(2){所有被3整除的數(shù)};
(3){x|x=|x|,x∈Z且x<5};
(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一裝有水的直三棱柱容器(厚度忽略不計(jì)),上下底面均為邊長(zhǎng)為5的正三角形,側(cè)棱為10,側(cè)面水平放置,如圖所示,點(diǎn), , , 分別在棱, , , 上,水面恰好過(guò)點(diǎn), , , ,且.
(1)證明: ;
(2)若底面水平放置時(shí),求水面的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊正方形菜地 , 所在直線是一條小河,收貨的蔬菜可送到 點(diǎn)或河邊運(yùn)走。于是,菜地分為兩個(gè)區(qū)域 和 ,其中 中的蔬菜運(yùn)到河邊較近, 中的蔬菜運(yùn)到 點(diǎn)較近,而菜地內(nèi) 和 的分界線 上的點(diǎn)到河邊與到 點(diǎn)的距離相等,現(xiàn)建立平面直角坐標(biāo)系,其中原點(diǎn) 為 的中點(diǎn),點(diǎn) 的坐標(biāo)為(1,0),如圖
(1)求菜地內(nèi)的分界線 的方程
(2)菜農(nóng)從蔬菜運(yùn)量估計(jì)出 面積是 面積的兩倍,由此得到 面積的“經(jīng)驗(yàn)值”為 。設(shè) 是 上縱坐標(biāo)為1的點(diǎn),請(qǐng)計(jì)算以 為一邊、另一邊過(guò)點(diǎn) 的矩形的面積,及五邊形 的面積,并判斷哪一個(gè)更接近于 面積的經(jīng)驗(yàn)值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com