【題目】已知函數(shù),給出下列結(jié)論:

(1)若對任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對任意的,都有關(guān)于對稱。

其中所有正確的結(jié)論序號為_________

【答案】(1),(3)

【解析】對于(1),若對于對任意,且,都有,即當(dāng)時, ,當(dāng)時, ,則上的減函數(shù),則(1)對;對于(2),若上的偶函數(shù),且在內(nèi)是減函數(shù),則上遞增, ,則即為,即有,解得,則(2)錯;對于(3),若上的奇函數(shù),則, ,即有也是R上的奇函數(shù),則(3)對;對于(4),若對任意的都有,即有,即為周期函數(shù),并非對稱函數(shù),若滿足,則關(guān)于直線對稱,則(4)錯,故答案為(1)(3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,正三角形的邊長為4,邊上的高,分別是邊的中點(diǎn),現(xiàn)將△沿翻折成直二面角,如圖

(1)判斷直線與平面的位置關(guān)系,并說明理由;

(2)求棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(I), 恒成立,求常數(shù)的取值范.

已知非零常數(shù)、滿足,求不等式的解集;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 ()的離心率是,過點(diǎn)(,)的動直線與橢圓相交于,兩點(diǎn),當(dāng)直線平行于軸時,直線被橢圓截得的線段長為

求橢圓的方程:

已知為橢圓的左端點(diǎn),: 是否存在直線使得的面積為?若不存在,說明理由,若存在,求出直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12甲、乙兩袋中各裝有大小相同的小球個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為、,乙袋中紅色、黑色、白色小球的個數(shù)均為,某人用左右手分別從甲、乙兩袋中取球

1若左右手各取一球,求兩只手中所取的球顏色不同的概率;

2若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N。

(1)請將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說明理由);

(2)證明:直線MN∥平面BDH;

(3)過點(diǎn)M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一個以、為半徑的扇形池塘,在、上分別取點(diǎn)、,作、分別交弧于點(diǎn)、,且,現(xiàn)用漁網(wǎng)沿著、、將池塘分成如圖所示的養(yǎng)殖區(qū)域.已知, , ).

(1)若區(qū)域Ⅱ的總面積為,求的值;

(2)若養(yǎng)殖區(qū)域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分別是30萬元、40萬元、20萬元,試問:當(dāng)為多少時,年總收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)滿足下列條件:

恒成立;恒成立.

(1)求的值; (2)求的解析式;

(3)求最大的實(shí)數(shù),使得存在實(shí)數(shù),當(dāng)時, 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,求曲線處的切線方程

(2)若無零點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案