(2012•包頭一模)等邊三角形ABC的三個頂點在一個半徑為1的球面上,O為球心,G為三角形ABC的中心,且OG=
3
3
.則△ABC的外接圓的面積為(  )
分析:先確定△ABC的外接圓的半徑,再求△ABC的外接圓的面積.
解答:解:設(shè)△ABC的外接圓的半徑為r,則
∵O為球心,G為三角形ABC的中心,且OG=
3
3
,球的半徑為1
∴r=
1-(
3
3
)2
=
6
3

∴△ABC的外接圓的面積為π×(
6
3
)2
=
3

故選C.
點評:本題考查球的截面圓,考查學生的計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•包頭一模)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2,AB=1.
(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點,求證:平面PAC⊥平面AEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭一模)下列命題錯誤的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭一模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與拋物線y2=8x有 一個公共的焦點F,且兩曲線的一個交點為P,若|PF|=5,則雙曲線方程為
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭一模)函數(shù)f(x)=sin(ωx+?)(其中|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭一模)在平面直角坐標系xoy中,曲線C1的參數(shù)方程為 
x=acosφ
y=bsinφ
(a>b>0,?為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心在極軸上,且經(jīng)過極點的圓.已知曲線C1上的點M(1,
3
2
)對應(yīng)的參數(shù)φ=
π
3
,曲線C2過點D(1,
π
3
).
(Ⅰ)求曲線C1,C2的直角坐標方程;
(Ⅱ)若點A(ρ 1,θ),B(ρ 2,θ+
π
2
) 在曲線C1上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

同步練習冊答案