2cosα-sinα>0
cosα-2sinα<0
,則cosα+sinα的取值范圍是
 
考點(diǎn):三角函數(shù)的最值,三角函數(shù)值的符號,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:首先,根據(jù)不等式的基本性質(zhì),得到cosα+sinα>0,然后,借助于輔助角公式確定其范圍.
解答: 解:∵
2cosα-sinα>0
cosα-2sinα<0
,
2cosα-sinα>0
2sinα-cosα>0

∴cosα+sinα>0,
∵cosα+sinα=
2
sin(α+
π
4
)≤
2

∴cosα+sinα∈(0,
2
].
故答案為:(0,
2
].
點(diǎn)評:本題重點(diǎn)考查了輔助角公式、三角函數(shù)的圖象與性質(zhì)、不等式的基本性質(zhì)等知識,屬于中檔題.命題角度比較新穎,需要注意此類題的解題方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)過點(diǎn)(4,2),則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD中,PA=AB,PA⊥底面ABCD,ABCD是平行四邊形,且∠BAC=90°.
(Ⅰ)求證:PB⊥AC;
(Ⅱ)若點(diǎn)E是線段PD上一點(diǎn),且滿足
PE
=2
ED
.求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x)=1-2x,f[g(x)]=
1
2x+2
,則f(-3)等于( 。
A、
1
6
B、
1
10
C、
3
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?1,2),則函數(shù)f(3-x)的定義域?yàn)?div id="agun1rf" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
1
2
,an+1=an-
1
2n+1
(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{1,2}⊆A⊆{1,2,3,4,5}}則滿足條件的集合A的個數(shù)是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+2lnx與g(x)=x+
a
x
有相同極值點(diǎn).
(1)求實(shí)數(shù)a的值;
(2)若x1,x2是區(qū)間[2,3]內(nèi)任意兩個不同的數(shù),求證:|f(x1)-f(x2)|<6|x1-x2|;
(3)若對于任意x1,x2∈[
1
e
,3],不等式
f(x1)-g(x2)
k-1
≤1恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x-1
在點(diǎn)P處的切線平行于直線x-y=0,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊答案