【題目】下列事件是隨機(jī)事件的是( 。

當(dāng)x>10時(shí),;當(dāng)xR,x2+x0有解

當(dāng)aR關(guān)于x的方程x2+a0在實(shí)數(shù)集內(nèi)有解;當(dāng)sinα>sinβ時(shí),α>β

A.①②B.②③C.③④D.①④

【答案】C

【解析】

根據(jù)隨機(jī)事件的定義,結(jié)合對數(shù)的單調(diào)性、一元二次方程根的判別式、正弦函數(shù)的性質(zhì)進(jìn)行判斷即可.

,因?yàn)楫?dāng)x>10時(shí),一定有成立,是必然事件,故本選項(xiàng)不符合題意;

x2+x0 ,因此當(dāng)xR,x2+x0一定有解,因此是必然事件,故本選項(xiàng)不符合題意;

:只有當(dāng)時(shí),方程在實(shí)數(shù)集內(nèi)有解,因此是隨機(jī)事件,故本選項(xiàng)符合題意;

:當(dāng)時(shí),顯然sinα>sinβ成立,但是α>β不成立,因此是隨機(jī)事件,故本選項(xiàng)符合題意.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過點(diǎn)(,1),以原點(diǎn)為圓心、橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點(diǎn).

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)過點(diǎn)(-1,0)的直線l與橢圓C相交于A,B兩點(diǎn),試問在x軸上是否存在一個(gè)定點(diǎn)M,使得恒為定值?若存在,求出該定值及點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)動點(diǎn)到點(diǎn)的距離比到直線的距離多1.

(1)求動點(diǎn)的軌跡的方程;

(2)若過點(diǎn)的直線與曲線交于兩點(diǎn),且線段中點(diǎn)是點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對函數(shù)f(x)xsinx,現(xiàn)有下列命題:函數(shù)f(x)是偶函數(shù);函數(shù)f(x)的最小正周期是;點(diǎn)0)是函數(shù)f(x)的圖象的一個(gè)對稱中心;函數(shù)f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.其中是真命題的是________(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車是碳排放量比較大的交通工具,某地規(guī)定,從2017年開始,將對二氧化碳排放量超過130 g/km的輕型汽車進(jìn)行懲罰性征稅,檢測單位對甲、乙兩品牌輕型汽車各抽取5輛進(jìn)行二氧化碳排放量檢測,記錄如下(單位:g/km):

80

110

120

140

150

100

120

x

100

160

經(jīng)測算得乙品牌輕型汽車二氧化碳排放量的平均值為=120 g/km.

(1)求表中x的值,并比較甲、乙兩品牌輕型汽車二氧化碳排放量的穩(wěn)定性;

(2)從被檢測的5輛甲品牌輕型汽車中任取2輛,則至少有一輛二氧化碳排放量超過130 g/km的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),若在曲線上存在點(diǎn)使得,則實(shí)數(shù)的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆安徽省合肥市高三第一次教學(xué)質(zhì)量檢測】一家大型購物商場委托某機(jī)構(gòu)調(diào)查該商場的顧客使用移動支付的情況.調(diào)查人員從年齡在內(nèi)的顧客中,隨機(jī)抽取了180人,調(diào)查結(jié)果如表:

1)為推廣移動支付,商場準(zhǔn)備對使用移動支付的顧客贈送1個(gè)環(huán)保購物袋.若某日該商場預(yù)計(jì)有12000人購物,試根據(jù)上述數(shù)據(jù)估計(jì),該商場當(dāng)天應(yīng)準(zhǔn)備多少個(gè)環(huán)保購物袋?

2)某機(jī)構(gòu)從被調(diào)查的使用移動支付的顧客中,按分層抽樣的方式抽取7人作跟蹤調(diào)查,并給其中2人贈送額外禮品,求獲得額外禮品的2人年齡都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了迎接第二屆國際互聯(lián)網(wǎng)大會,組委會對報(bào)名參加服務(wù)的名志愿者進(jìn)行互聯(lián)網(wǎng)知識測試,從這名志愿者中采用隨機(jī)抽樣的方法抽取人,所得成績?nèi)缦拢?/span> , , , , , , , , , , , , , .

(1)作出抽取的人的測試成績的莖葉圖,以頻率為概率,估計(jì)這志愿者中成績不低于分的人數(shù);

(2)從抽取的成績不低于分的志愿者中,隨機(jī)選名參加某項(xiàng)活動,求選取的人恰有一人成績不低于分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某圖書公司有一款圖書的歷史收益率(收益率=利潤÷每本收入)的頻率分布直方圖如圖所示:

(1)試估計(jì)平均收益率;(用區(qū)間中點(diǎn)值代替每一組的數(shù)值)

(2)根據(jù)經(jīng)驗(yàn),若每本圖書的收入在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對應(yīng)數(shù)據(jù):

據(jù)此計(jì)算出的回歸方程為

①求參數(shù)的估計(jì)值;

②若把回歸方程當(dāng)作的線性關(guān)系, 取何值時(shí),此產(chǎn)品獲得最大收益,并求出該最大收益.

查看答案和解析>>

同步練習(xí)冊答案