1.設(shè)函數(shù)f(x)=-ln(-x+1);g(x)=$\left\{\begin{array}{l}{x^2}({x≥0})\\ f(x)({x<0})\end{array}$,則g(-2)=-ln3;函數(shù)y=g(x)+1的零點(diǎn)是1-e.

分析 g(-2)=f(-2),令g(x)=-1,對(duì)x進(jìn)行討論,列方程組解出x即可.

解答 解:∵當(dāng)x<0時(shí),g(x)=f(x),
∴g(-2)=f(-2)=-ln3.
令y=g(x)+1=0得g(x)=-1,
∴$\left\{\begin{array}{l}{{x}^{2}=-1}\\{x≥0}\end{array}\right.$或$\left\{\begin{array}{l}{-ln(-x+1)=-1}\\{x<0}\end{array}\right.$,
解得x=1-e.
故答案為:-ln3,1-e.

點(diǎn)評(píng) 本題考查了分段函數(shù)函數(shù)值的計(jì)算,函數(shù)零點(diǎn)的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若直線(xiàn)(1+a)x+y+1=0與圓(x-1)2+y2=1相切,則a的值為( 。
A.1,-1B.2,-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)f(x)=alnx+bx2+x在x1=1和x2=2處都取得極值,試求a與b的值,并指出這時(shí)f(x)在x1與x2處是取得極大值還是極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$cos(2x-$\frac{π}{3}$)-$\frac{1}{2}$cos2x,x∈R.
(1)求f(x)的最小正周期.
(2)求f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)α,β是第二象限的角,且sinα<sinβ,那么下列不等式成立的是(  )
A.α<βB.cosα<cosβC.tanα<tanβD.sinα>sinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,ABCD-A1B1C1D1為正方體,則下列結(jié)論錯(cuò)誤的是( 。
A.A1C⊥B1D1B.B1D1∥平面BDC1
C.A1C⊥平面BDC1D.異面直線(xiàn)AD與BC1所成的角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)已知△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(2,-1),B(2,2),C(4,1),求三角形AC邊上的中線(xiàn)所在直線(xiàn)方程;
(2)傾斜角為60°且與直線(xiàn)5x-y+2=0有相同縱截距的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知向量$\overrightarrow{OB}$=(2,0),向量$\overrightarrow{OC}$=(2,2),向量$\overrightarrow{CA}$=($\sqrt{2}$cosα,$\sqrt{2}$sinα),則向量$\overrightarrow{OA}$與向量$\overrightarrow{CB}$的夾角的取值范圍是[105°,165°].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.(1+x)7(1-x)5的展開(kāi)式中,含x6項(xiàng)的系數(shù)是0.

查看答案和解析>>

同步練習(xí)冊(cè)答案