A. | 8 | B. | 4$\sqrt{5}$ | C. | 12 | D. | 16 |
分析 由已知中的三視圖,可知該幾何體是一個以等腰直角三角形為底面的三棱錐,根據(jù)尺寸計算每一個面的面積,即可知面積的最大值.
解答 解:由已知中的三視圖,可知該幾何體是一個以等腰直角三角形為底面的三棱錐,如圖:
從圖上可知PD=4,PD垂直平面ABC.ABC是等腰直角三角形,邊長為4,即AC=BC=4
∴AB=4$\sqrt{2}$,CD=DB=2.
∴AD=2$\sqrt{5}$,PB=CP=2$\sqrt{5}$
∴AP=6.
SABP=12,
${S}_{ABC}=\frac{1}{2}×4×4=8$
${S}_{ACP}=4\sqrt{5}$.
${S}_{CBP}=\frac{1}{2}×4×2\sqrt{5}$=4$\sqrt{5}$.
∴該多面體的所有面中,面積的最大值是SABP,其值為12.
故選C
點評 本題考查的知識點是由三視圖求表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.
科目:高中數(shù)學(xué) 來源: 題型:解答題
優(yōu)秀 | 合格 | 合計 | |
大學(xué)組 | |||
中學(xué)組 | |||
合計 |
P(k2≥k0) | 0.10 | 0.05 | 0.005 |
k0 | 2.706 | 3.841 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{25}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | $\frac{\sqrt{3π}}{2}$ | C. | π | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 95,94 | B. | 92,86 | C. | 99,86 | D. | 95,91 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com