【題目】如圖所示,在正方體中,E是棱的中點.
(Ⅰ)求直線BE與平面所成的角的正弦值;
(Ⅱ)在棱上是否存在一點F,使平面?證明你的結論.
科目:高中數學 來源: 題型:
【題目】(多選題)某工廠八年來某種產品總產量y(即前x年年產量之和)與時間x(年)的函數關系如圖,下列五種說法中正確的是( )
A.前三年中,總產量的增長速度越來越快
B.前三年中,總產量的增長速度越來越慢
C.前三年中,年產量的增長速度越來越慢
D.第三年后,這種產品停止生產
E.第三年后,年產量保持不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為倡導全體學生為特困學生捐款,舉行“一元錢,一片心,誠信用水”活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢,現(xiàn)統(tǒng)計了連續(xù)天的售出和收益情況,如下表:
售出水量(單位:箱) | |||||
收益(單位:元) |
(1)若每天售出箱水,求預計收益是多少元?
(2)期中考試以后,學校決定將誠信用水的收益,以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生考入年級前名,獲一等獎學金元;考入年級前名,獲二等獎學金元;考入年級名以后的特困生不獲得獎學金。甲、乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,不獲得獎學金的概率均為.
①在學生甲獲得獎學金的條件下,求他獲得一等獎學金的概率;
②已知甲、乙兩名學生獲得哪個等第的獎學金是相互獨立的,求甲、乙兩名學生所獲得獎學金總金額的分布列及數學期望
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據悉,2017年教育機器人全球市場規(guī)模已達到8.19億美元,中國占據全球市場份額10.8%.通過簡單隨機抽樣得到40家中國機器人制造企業(yè),下圖是40家企業(yè)機器人的產值頻率分布直方圖.
(1)求的值;
(2)在上述抽取的40個企業(yè)中任取3個,抽到產值小于500萬元的企業(yè)不超過兩個的概率是多少?
(3)在上述抽取的40個企業(yè)中任取2個,設為產值不超過500萬元的企業(yè)個數減去超過500萬元的企業(yè)個數的差值,求的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程](10分)
在極坐標系中,圓C的極坐標方程為,若以極點O為原點,極軸為x軸的正半軸建立平面直角坐標系.
(1)求圓C的一個參數方程;
(2)在平面直角坐標系中,是圓C上的動點,試求的最大值,并求出此時點P的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=.
(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;
(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年10月24日,世界上最長的跨海大橋一港珠澳大橋正式通車在一般情況下,大橋上的車流速度單位:千米時是車流密度單位:輛千米的函數當橋上的車流密度達到220輛千米時,將造成堵塞,此時車流速度為0;當車流密度不超過20輛千米時,車流速度為100千米時,研究表明:當時,車流速度v是車流密度x的一次函數.
Ⅰ當時,求函數的表達式;
Ⅱ當車流密度x為多大時,車流量單位時間內通過橋上某觀測點的車輛數,單位:輛時可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線的參數方程為(為參數).以原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;
(Ⅱ)若點的直角坐標為,曲線與直線交于兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com