【題目】20181024日,世界上最長的跨海大橋一港珠澳大橋正式通車在一般情況下,大橋上的車流速度單位:千米是車流密度單位:輛千米的函數(shù)當(dāng)橋上的車流密度達(dá)到220千米時,將造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20千米時,車流速度為100千米時,研究表明:當(dāng)時,車流速度v是車流密度x的一次函數(shù).

當(dāng)時,求函數(shù)的表達(dá)式;

當(dāng)車流密度x為多大時,車流量單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛可以達(dá)到最大?并求出最大值.

【答案】(Ⅰ)(Ⅱ)車流密度為110千米時,車流量最大,最大值為6050時.

【解析】

利用待定系數(shù)法求出當(dāng)時的函數(shù)解析式得出結(jié)論;

分段求出函數(shù)的最大值即可得出的最大值.

解:當(dāng)時,設(shè),則

解得:,

當(dāng)時,;

當(dāng)時,,

當(dāng)時,的最大值為

車流密度為110千米時,車流量最大,最大值為6050時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且過定點M(1, ).
(1)求橢圓C的方程;
(2)已知直線l:y=kx﹣ (k∈R)與橢圓C交于A、B兩點,試問在y軸上是否存在定點P,使得以弦AB為直徑的圓恒過P點?若存在,求出P點的坐標(biāo)和△PAB的面積的最大值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的命題是  

A. 任意三點確定一個平面

B. 三條平行直線最多確定一個平面

C. 不同的兩條直線均垂直于同一個平面,則這兩條直線平行

D. 一個平面中的兩條直線與另一個平面都平行,則這兩個平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”.已知直線l1ax3y60,l22x(a1)y60與圓Cx2y22xb21(b>0)的位置關(guān)系是“平行相交”,則實數(shù)b的取值范圍為 (   )

A. (, ) B. (0 )

C. (0, ) D. (, )(,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一圓與直線相切于點,且經(jīng)過點,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將5名報名參加運動會的同學(xué)分別安排到跳繩、接力,投籃三項比賽中(假設(shè)這些比賽都不設(shè)人數(shù)上限),每人只參加一項,則共有種不同的方案;若每項比賽至少要安排一人時,則共有種不同的方案,其中的值為( )

A. 543 B. 425 C. 393 D. 275

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定下列四個命題:

若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;

若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;

垂直于同一直線的兩條直線相互平行;

若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.

其中,為真命題的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),當(dāng)點的圖像上移動時,點在函數(shù)的圖像上移動,

(1)若點的坐標(biāo)為,點也在圖像上,求的值。

(2)求函數(shù)的解析式。

(3)當(dāng),令,求上的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)的定義域為[-1,1],當(dāng)時,。

(1)求函數(shù)上的值域;

(2)若時,函數(shù)的最小值為-2,求實數(shù)λ的值。

查看答案和解析>>

同步練習(xí)冊答案