如圖,正三棱柱的底面邊長(zhǎng)是,側(cè)棱長(zhǎng)是,的中點(diǎn).

(1)求證:∥平面
(2)求二面角的大;
(3)在線段上是否存在一點(diǎn),使得平面平面,若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
(1)詳見(jiàn)解析,(2),(3).

試題分析:(1)線面平行判定定理,關(guān)鍵找線線平行.利用三角形中位線性質(zhì)找平行,取的中點(diǎn),則是三角形的中位線,即.應(yīng)用定理證明時(shí),需寫(xiě)出定理所需條件.(2)利用空間向量求二面角的大小,關(guān)鍵求出平面的法向量.平面的一個(gè)法向量為,而平面的法向量則需列方程組解出.根據(jù)向量的數(shù)量積求出兩向量夾角,再根據(jù)向量夾角與二面角的大小關(guān)系,求出結(jié)果.一般根據(jù)圖像判定所求二面角是銳角還是鈍角.(3)存在性問(wèn)題,從假定存在出發(fā),利用面面垂直列等量關(guān)系.在(2)中已求出平面的法向量,因此只需用點(diǎn)坐標(biāo)表示平面的法向量即可.解題結(jié)果需注意點(diǎn)在線段上這一限制條件.
試題解析:

(1)證明:連結(jié),連結(jié)
因?yàn)槿庵?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042203091680.png" style="vertical-align:middle;" />是正三棱柱,
所以四邊形是矩形,
所以的中點(diǎn).
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042203122315.png" style="vertical-align:middle;" />是的中點(diǎn),
所以是三角形的中位線,             2分
所以.                           3分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042203824508.png" style="vertical-align:middle;" />平面,平面
所以∥平面.                      4分

(2)解:作,所以平面,
所以在正三棱柱中如圖建立空間直角坐標(biāo)系
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042204120485.png" style="vertical-align:middle;" />,,的中點(diǎn).
所以,, 5分
所以,

設(shè)是平面的法向量,
所以
,則,,
所以是平面的一個(gè)法向量.             6分
由題意可知是平面的一個(gè)法向量,      7分
所以.                            8分
所以二面角的大小為.                         9分
(3)設(shè),則
設(shè)平面的法向量,
所以
,則,,
,                                12分
,即,解得,
所以存在點(diǎn),使得平面平面.   14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱臺(tái)中,底面是平行四邊形,平面,,.

(1)證明:平面
(2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐,底面是矩形,平面底面,,平面,且點(diǎn)上.

(1)求證:;
(2)求三棱錐的體積;
(3)設(shè)點(diǎn)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱中,,點(diǎn)的中點(diǎn)。

(1)求證:∥平面
(2)如果點(diǎn)的中點(diǎn),求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,為正三角形,平面,的中點(diǎn).

(1)求證:平面
(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知平面α⊥平面β,α∩β=l,點(diǎn)A∈α,A∉l,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關(guān)系中,不一定成立的是(  )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個(gè)不同的平面,給出下列條件,能得到的是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列四個(gè)正方體圖形中,、為正方體的兩個(gè)頂點(diǎn),、、分別為其所在棱的中點(diǎn),能得出平面的圖形的序號(hào)是(     )
A.①、③B.①、④C.②、③ D.②、④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

給岀四個(gè)命題:
(1)若一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,則這兩個(gè)角相等;
(2)a,b為兩個(gè)不同平面,直線aÌa,直線bÌa,且a∥b,b∥b,則a∥b;
(3)a,b為兩個(gè)不同平面,直線m⊥a,m⊥b,則a∥b;
(4)a,b為兩個(gè)不同平面,直線m∥a,m∥b,則a∥b .
其中正確的是(   )
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案