分析 (1)由題意求出A,T,利用周期公式求出ω,利用當(dāng)x=$\frac{π}{6}$時取得最大值2,求出φ,得到函數(shù)的解析式,即可.
(2)根據(jù)誘導(dǎo)公式和倍角公式化簡即可.
解答 解:(1)由題意可知A=2,T=4($\frac{5}{12}$-$\frac{π}{6}$)=π,ω=2,當(dāng)x=$\frac{π}{6}$時取得最大值2,所以 2=2sin(2x+φ),所以φ=$\frac{π}{6}$,
函數(shù)f(x)的解析式:f(x)=2sin(2x+$\frac{π}{6}$)
故答案為:f(x)=2sin(2x+$\frac{π}{6}$).
(2)∵f($\frac{α}{4}$)=$\frac{1}{2}$,
∴f($\frac{α}{4}$)=2sin($\frac{α}{2}$+$\frac{π}{6}$)=$\frac{1}{2}$,
∴sin($\frac{α}{2}$+$\frac{π}{6}$)=$\frac{1}{4}$,
∴sin($\frac{π}{6}$-α)=cos(α+$\frac{π}{3}$)=1-2sin2($\frac{α}{2}$+$\frac{π}{6}$)=1-2×$\frac{1}{16}$=$\frac{7}{8}$.
點評 本題是基礎(chǔ)題,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,注意函數(shù)的周期的求法,考查計算能力,?碱}型.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{π}{6}$,$\frac{π}{6}$) | B. | (-$\frac{π}{2}$,$\frac{π}{6}$) | C. | (-$\frac{π}{2}$,$\frac{π}{3}$) | D. | (-$\frac{π}{3}$,$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$或1 | D. | $\frac{1}{2}$或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ②③ | C. | ③④ | D. | ②③④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com