數(shù)列1+
1
2
2+
1
4
,3+
1
8
4+
1
16
,…的前n項和為( 。
A、2-
1
2n
-
n
2n+1
B、2-
1
2n-1
-
n
2n
C、
n
2
(n+1)+1-
1
2n
D、
n(n+1)
2
+1-
1
2n-1
分析:將數(shù)列看成兩個數(shù)列,一個等差數(shù)列與一個等比數(shù)列,然后分別利用等差數(shù)列的求和公式和等比數(shù)列的求和公式進(jìn)行求解,即可求出所求.
解答:解:1+
1
2
+2+
1
4
+3+
1
8
+4+
1
16
+…+n+
1
2n

=(1+2+3+…+n)+(
1
2
+
1
4
+…+
1
2n

=
(1+n)n
2
+
1
2
(1-(
1
2
)n)
1-
1
2

=
n
2
(n+1)+1-
1
2n

故選:C.
點評:本題主要考查了等差數(shù)列與等比數(shù)列的求和,該題運用了分組求和的方法,解題的關(guān)鍵是熟練掌握數(shù)列求和公式,同時考查了運算求解的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
,
ON
=y
OB

(1)求證:x與y的關(guān)系為y=
x
x+1
;
(2)設(shè)f(x)=
x
x+1
,定義函數(shù)F(x)=
1
f(x)
-1(0<x≤1)
,點列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為
1
2
的等比數(shù)列,O為原點,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點Q(1,m),使得
OP
OQ
?若存在,請求出Q點坐標(biāo);若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當(dāng)x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當(dāng)方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實數(shù)解時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列1+
1
2
,2+
1
4
,3+
1
8
,4+
1
16
,…的前n項的和為( 。
A、
1
2n
+
n2+n
2
B、-
1
2n
+
n2+n
2
+1
C、-
1
2n
+
n2+n
2
D、-
1
2n+1
+
n2-n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列1+
1
2
 , 2+
1
4
 , 3+
1
8
 , … , n+
1
2n
 , …
的前n項和是
n(n+1)
2
+1-
1
2n
n(n+1)
2
+1-
1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)設(shè)奇函數(shù)f(x)對任意x∈R都有f(x)=f(x-1)+
1
2

(1)求f(
1
2
)
f(
k
n
)+f(
n-k
n
)(k=0,1,2,…,n)
的值;
(2)數(shù)列{an}滿足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
-f(
1
2
)
,數(shù)列{an}是等差數(shù)列嗎?請給予證明;
(3)設(shè)m與k為兩個給定的不同的正整數(shù),{an}是滿足(2)中條件的數(shù)列,
證明:
s
n=1
|
(m+1)nan+1
-
(kn+n+k+1)an
|<(
s+1
2
)
2
|
m
-
k
|
(s=1,2,…).

查看答案和解析>>

同步練習(xí)冊答案