已知等差數(shù)列{an}的前三項(xiàng)為a-1,4,2a,記前n項(xiàng)和為Sn
(Ⅰ)設(shè)Sk=2550,求a和k的值;
(Ⅱ)設(shè)bn=
Snn
,求b3+b7+b11+…+b4n-1的值.
分析:(Ⅰ)由等差數(shù)列的前三項(xiàng)可求該數(shù)列的首項(xiàng)a1、公差d,再由等差數(shù)列的前n 項(xiàng)和公式算出Sn,進(jìn)一步得Sk=2550,解出k的值
(Ⅱ)由(Ⅰ)可知數(shù)列{bn}為等差數(shù)列,利用等差數(shù)列的前n項(xiàng)公式求值.
解答:解:(Ⅰ)由已知得a1=a-1,a2=4,a3=2a,又a1+a3=2a2
∴(a-1)+2a=8,即a=3.(2分)
∴a1=2,公差d=a2-a1=2.
由Sk=ka1+
k(k-1)
2
d
,得(4分)
2k+
k(k-1)
2
×2=2550
即k2+k-2550=0.解得k=50或k=-51(舍去).
∴a=3,k=50.(6分)
(Ⅱ)由Sn=na1+
n(n-1)d
2
,得
Sn=2n+
n(n-1)
2
×2=n2+n(8分)
∴bn=
Sn
n
=n+1(9分)
∴{bn}是等差數(shù)列.
則b3+b7+b11+…+b4n-1=(3+1)+(7+1)+(11+1)+…+(4n-1+1)
=(3+7+11+…+4n-1)+n
=
(3+4n-1)n
2
+n

=
(4n+2)n
2
+n(11分)
∴b3+b7+b11+…+b4n-1=2n2+2n(12分)
點(diǎn)評(píng):本題主要考查等差數(shù)列的通項(xiàng)公式及前n和公式,考查基本運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案