如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)的圖象的一部分,則其解析式f(x)=
3sin(3x-
π
2
3sin(3x-
π
2
分析:由圖可知,A=3,由
1
2
T=
π
3
可求ω,由ω×
π
2
+φ=π可求φ,從而可得函數(shù)f(x)=Asin(ωx+φ)的解析式.
解答:解:圖可知,A=3,
1
2
T=
6
-
π
2
=
π
3
,得T=
3

∴ω=
T
=3,代入ω×
π
2
+φ=π,得φ=π-
2
=-
π
2
,滿足|φ|≤
π
2

∴f(x)=3sin(3x-
π
2
).
故答案為:3sin(3x-
π
2
).
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,求φ是難點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π),x∈R的部分圖象,則下列命題中,正確命題的序號(hào)為
 

①函數(shù)f(x)的最小正周期為
π
2
;
②函數(shù)f(x)的振幅為2
3

③函數(shù)f(x)的一條對(duì)稱軸方程為x=
12
;
④函數(shù)f(x)的單調(diào)遞增區(qū)間為[
π
12
,
12
];
⑤函數(shù)的解析式為f(x)=
3
sin(2x-
3
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象
(1)求函數(shù)解析式,寫出f(x)的單調(diào)減區(qū)間
(2)當(dāng)x∈[
π
12
,
π
2
],求f(x)的值域.
(3)當(dāng)x∈R時(shí),求使f(x)≥1 成立的x 的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)f(x)=x3+bx2+cx+d圖象,則函數(shù)y=x2+2bx+c的單調(diào)遞增區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•溫州二模)若如圖是函數(shù)f(x)=sin2x和函數(shù)g(x)的部分圖象,則函數(shù)g(x)的解析式可能是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案