【題目】如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.
【答案】( I)證明:連接AB.
∵P、B、F、A四點共圓,∴∠PAB=∠PFB.
又PA與圓O切于點A,∴∠PAB=∠AEB,
∴∠PFB=∠AEB∴AE∥CD.
( II)解:因為PA、PB是圓O的切線,所以P、B、O、A四點共圓,
由△PAB外接圓的唯一性可得P、B、F、A、O共圓,
四邊形PBFA的外接圓就是四邊形PBOA的外接圓,∴OP是該外接圓的直徑.
由切割線定理可得PA2=PCPD=3×9=27
∴ .
∴四邊形PBFA的外接圓的半徑為 .
【解析】(Ⅰ)連接AB,利用P、B、F、A四點共圓,PA與圓O切于點A,得出兩組角相等,即可證明:AE∥CD;(Ⅱ)四邊形PBFA的外接圓就是四邊形PBOA的外接圓,OP是該外接圓的直徑,由切割線定理可得PA,即可求四邊形PBFA的外接圓的半徑.
科目:高中數學 來源: 題型:
【題目】某3D打印機,其打出的產品質量按照百分制衡量,若得分不低于85分則為合格品,低于85分則為不合格品,商家用該打印機隨機打印了15件產品,得分情況如圖;
(1)寫出該組數據的中位數和眾數,并估計該打印機打出的產品為合格品的概率;
(2)若打印一件合格品可獲利54元,打印一件不合格品則虧損18元,記X為打印3件產品商家所獲得的利潤,在(1)的前提下,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左焦點左頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知,是橢圓上的兩點,是橢圓上位于直線兩側的動點.若,試問直線的斜率是否為定值?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為( 。
(結果精確到0.1.參考數據:lg2=0.3010,lg3=0.4771.)
A. 天B. 天C. 天D. 天
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點O為坐標原點,極軸為x軸非負半軸建立平面直角坐標系.
(Ⅰ)求曲線C1和曲線C2的直角坐標方程;
(Ⅱ)若點P是曲線C1上一動點,過點P作線段OP的垂線交曲線C2于點Q,求線段PQ長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數y=3cos2x的圖象,只需把函數y=3sin(2x+ )的圖象上所有的點( )
A.向右平行移動 個單位長度
B.向右平行移動 個單位長度
C.向左平行移動 個單位長度
D.向左平移移動 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠家擬舉行促銷活動,經調查測算,該產品的年銷售量(即該廠的年產量)萬件與年促銷費用萬元()滿足(為常數),如果不搞促銷活動,則該產品的年銷售量只能是1萬件.已知年生產該產品的固定投入為8萬元,每生產1萬件該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品年平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金).
(1)將該產品的年利潤萬元表示為年促銷費用萬元的函數;
(2)該廠家年促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,若曲線C1的方程為ρsin(θ+ )+2 =0,曲線C2的參數方程為 (θ為參數).
(1)將C1的方程化為直角坐標方程;
(2)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com