在算式:“4×□+1×□=30”的兩個□中,分別填入兩個自然數(shù),使他們的倒數(shù)之和最小,則這兩個數(shù)應分別為   
【答案】分析:先設(shè)出兩個□,然后利用代入消元法表示出其倒數(shù)和,由于該倒數(shù)和的形式中分母次數(shù)高于分子,則求其倒數(shù)的最大值,這與原倒數(shù)和的最小值是一致的;最終把代數(shù)式轉(zhuǎn)化為x++a(x>0)的形式,利用基本不等式求最值,則由取最值的條件即可解決問題.
解答:解:設(shè)1×m+4n=30,m、n∈N+,則m=30-4n,其中1≤n≤7.
所以y===,
=====+
==-+=-[(10-n)+]+≤-×2×+=
當10-n=時取等號,即 取得最大值,y取得最小值.
解得n=5,則m=10.所以m+n=15.
故答案為5,10.
點評:本題主要考查了代數(shù)式向形如x++a(x>0,a為常數(shù))的代數(shù)式的轉(zhuǎn)化方法,注意分子次數(shù)必須高于分母次數(shù);同時考查基本不等式的運用條件,特別是取等號時的條件.該題代數(shù)運較為繁瑣,運算量較大,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在算式“1×□+4×□=30”的兩個□中,分別填入兩個自然數(shù),使它們的倒數(shù)之和最小,則這兩個數(shù)的和為
15
15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在算式:“4×□+1×□=30”的兩個□中,分別填入兩個自然數(shù),使他們的倒數(shù)之和最小,則這兩個數(shù)應分別為
5,10
5,10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在算式“30-△=4×□”中的△,□分別填入兩個正整數(shù),使它們的倒數(shù)和最小,則這兩個數(shù)構(gòu)成的數(shù)對(△,□)應為(    )

A.(4,14)               B.(6,6)            C.(3,18)                D.(10,5)

查看答案和解析>>

科目:高中數(shù)學 來源:2006年江蘇省南通中學高三數(shù)學調(diào)研試卷(解析版) 題型:解答題

在算式:“4×□+1×□=30”的兩個□中,分別填入兩個自然數(shù),使他們的倒數(shù)之和最小,則這兩個數(shù)應分別為   

查看答案和解析>>

同步練習冊答案