對于一組數(shù)據(jù)..-..其回歸直線的斜率和截距的最小二乘估計分別為..其中....">

【題目】西瓜是夏日消暑的好水果,西瓜的銷售價格(單位:千元/噸)與西瓜的年產(chǎn)量(單位:噸)有關,下表數(shù)據(jù)為某地區(qū)連續(xù)6年來西瓜的年產(chǎn)量及對應的西瓜銷售價格.

1

2

3

4

5

6

1)若有較強的線性相關關系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出的線性回歸直線方程(系數(shù)精確到);

2)若每噸西瓜的成本為4810元,假設所有西瓜可以全部賣出,預測當年產(chǎn)量為多少噸 時年利潤最大?

參考公式及數(shù)據(jù):

p>對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,,其中,,,

【答案】1;(2)當年產(chǎn)量為4噸時,年利潤最大.

【解析】

1)代入公式計算出,,即可得解;

2)設年利潤為千元,由題意可得,利用二次函數(shù)的性質即可得解.

1)設的回歸直線方程為

,

,

所以;

2)設年利潤為千元,則,

時,取最大值,

所以當年產(chǎn)量為4噸時,年利潤最大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD平面CDE,H是BE的中點,G是AE,DF的交點

(1)求證:GH平面CDE;

(2)求證:面ADEF面ABCD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:若x2+y2>2,則|x|>1或|y|>1;命題q:直線mx-2y-m-2=0與圓x2+y2-3x+3y+2=0必有兩個不同交點,則下列說法正確的是( )

A. p為真命題 B. p∧(q)為真命題

C. (p)∨q為假命題 D. (p)∨(q)為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交通部門調查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15.

1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;

平均車速超過的人數(shù)

平均車速不超過的人數(shù)

合計

男性駕駛員

女性駕駛員

合計

2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機調查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結果相互獨立,求的分布列和數(shù)學期望.

參考公式:

臨界值表:

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, , , 分別是的中點.

(1)求證: 平面

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知若橢圓)交軸于,兩點,點是橢圓上異于,的任意一點,直線,分別交軸于點,,則為定值.

1)若將雙曲線與橢圓類比,試寫出類比得到的命題;

2)判定(1)類比得到命題的真假,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A.將一組數(shù)據(jù)中的每個數(shù)據(jù)都乘以同一個非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a

B.設有一個回歸方程,變量x增加1個單位時,y平均減少5個單位

C.線性相關系數(shù)r越大,兩個變量的線性相關性越強;反之,線性相關性越弱

D.在某項測量中,測量結果ξ服從正態(tài)分布N1σ2)(σ0),則Pξ1)=0.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)函數(shù)與函數(shù)的圖像總有兩個交點,設這兩個交點的橫坐標分別為.

(。┣的取值范圍;

(ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學;虬嗉壟e行活動,通常需要張貼海報進行宣傳.現(xiàn)讓你設計一張如圖所示的豎向張貼的海報,要求版心面積為128 dm2,上、下兩邊各空2 dm,左、右兩邊各空1 dm.如何設計海報的尺寸,才能使四周空白面積最?

查看答案和解析>>

同步練習冊答案