平面直角坐標(biāo)系內(nèi)的格點(diǎn)(橫、縱坐標(biāo)都是整數(shù)的點(diǎn))到直線6 x + 8 y = 15的最近距離是   。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•黃浦區(qū)二模)設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長(zhǎng)}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫出結(jié)果即可);
(3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為
.
A
,若圓{(x,y)|(x-p)2+(x-q)2=r2}⊆
.
A
(r>0)
,求r的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市十三校2012屆高三第二次聯(lián)考數(shù)學(xué)理科試題 題型:044

現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1,y1),B(x2,y2)兩點(diǎn)間的“直角距離”為:D(AB)=|x1-x2|+|y1-y2|.

(1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的“直角距離”為2的“格點(diǎn)”的坐標(biāo).(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))

(2)求到兩定點(diǎn)F1、F2的“直角距離”和為定值2a(a>0)的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.

①F1(-1,0),F(xiàn)2(1,0),a=2;

②F1(-1,-1),F(xiàn)2(1,1),a=2;

③F1(-1,-1),F(xiàn)2(1,1),a=4.

(3)寫出同時(shí)滿足以下兩個(gè)條件的“格點(diǎn)”的坐標(biāo),并說(shuō)明理由(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).

①到A(-1,-1),B(1,1)兩點(diǎn)“直角距離”相等;

②到C(-2,-2),D(2,2)兩點(diǎn)“直角距離”和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長(zhǎng)}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫出結(jié)果即可);
(3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為數(shù)學(xué)公式,若圓數(shù)學(xué)公式,求r的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年上海市徐匯區(qū)零陵中學(xué)高三3月綜合練習(xí)數(shù)學(xué)試卷(四)(解析版) 題型:解答題

設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長(zhǎng)}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫出結(jié)果即可);
(3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為,若圓,求r的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案