函數(shù)上的單調(diào)遞增區(qū)間為   
【答案】分析:根據(jù)誘導公式和兩角差的余弦公式,化函數(shù)為f(x)=cos(),再結(jié)合余弦函數(shù)單調(diào)區(qū)間的結(jié)論,求出函數(shù)在R上的單調(diào)區(qū)間,將其與區(qū)間取交集,即可得到所求的單調(diào)遞增區(qū)間.
解答:解:∵cos=-cos
==cos(
令-π+2kπ≤≤2kπ,得-+kπ≤x≤+kπ,(k∈Z)
∴函數(shù)的單調(diào)遞增區(qū)間為[-+kπ,+kπ],(k∈Z)
取k=0,得函數(shù)在上的單調(diào)遞增區(qū)間為[-,]
故答案為:[-,]
點評:本題將一個三角函數(shù)式化簡,并求函數(shù)的增區(qū)間,著重考查了誘導公式、三角恒等變形和三角函數(shù)的圖象與性質(zhì)等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2006•松江區(qū)模擬)(文)已知函數(shù)f(x)=ax2-2
4+2b-b2
x
,g(x)=-
1-(x-a)2
,(a,b∈R)
(Ⅰ)當b=0時,若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對(a,b):當a是整數(shù)時,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對(a,b),試構(gòu)造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當x∈(-2,0)時,h(x)=f(x),當x∈D時,h(x)取得最大值的自變量的值構(gòu)成以x0為首項的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•順義區(qū)二模)設函數(shù)f(x)=
ax
x2+b
(a>0)

(1)若函數(shù)f(x)在x=-1處取得極值-2,求a,b的值;
(2)若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)單調(diào)遞增,求b的取值范圍;
(3)在(1)的條件下,若P(x0,y0)為函數(shù)f(x)=
ax
x2+b
圖象上任意一點,直線l與f(x)的圖象切于點P,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寶坻區(qū)一模)已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點A(1,4),且在點A處的切線恰好與直線9x-y+3=0平行.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天河區(qū)三模)已知函數(shù)f(x)=2sin(π-x)cosx+2sin2
2
-x)-1
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[
π
4
,
4
]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(安徽卷) 題型:013

動點A(x,y)在圓x2+y2=1上繞坐標原點沿逆時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周,已知時間t=0時,點A的坐標是,則當0≤t≤12時,動點A的縱坐標y關于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)向是

[  ]
A.

[0,1]

B.

[1,7]

C.

[7,12]

D.

[0,1]和[7,12]

查看答案和解析>>

同步練習冊答案