(2012•天河區(qū)三模)已知函數(shù)f(x)=2sin(π-x)cosx+2sin2
2
-x)-1
(Ⅰ)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[
π
4
4
]
上的最大值和最小值.
分析:(I)利用二倍角三角函數(shù)公式和輔助角公式化簡,得到f(x)=
2
sin(2x+
π
4
)
.再由三角函數(shù)的周期公式和單調區(qū)間公式,即可得到f(x)的最小正周期和單調遞增區(qū)間;
(II)求出當x∈[
π
4
,
4
]
時,2x+
π
4
∈[
4
,
4
],結合正弦函數(shù)的圖象與性質,即可得到函數(shù)f(x)在上的最大值和最小值.
解答:解:(Ⅰ)由題意,得
f(x)=2sin(π-x)cosx+2sin2
2
-x)-1
=2sinxcosx+2cos2x-1=sin2x+cos2x,
∴f(x)=sin2x+cos2x=
2
sin(2x+
π
4
)
.…..(3分)
可得f(x)的最小正周期T=
2
…..(5分)
又∵由-
π
2
+2kπ≤2x+
π
4
π
2
+2kπ,k∈Z
,解得-
8
+kπ≤x≤
π
8
+kπ,k∈Z

∴函數(shù)f(x)的單調遞增區(qū)間:[-
8
+kπ,
π
8
+kπ],k∈Z
…..(7分)
(Ⅱ)由(Ⅰ)知f(x)=
2
sin(2x+
π
4
)

π
4
≤x≤
4
,得
4
≤2x+
π
4
4
.…..(8分)
∴當2x+
π
4
=
4
,即x=
π
4
時,函數(shù)f(x)有最大值是1;…..(10分)
2x+
π
4
=
2
,即x=
8
時,函數(shù)f(x)有最小值是-
2
.…..(11分)
綜上所述,函數(shù)f(x)在區(qū)間[
π
4
,
4
]
上的最大值是1,最小值是-
2
.…..(12分)
點評:本題給出三角函數(shù)表達式,求函數(shù)的周期與單調區(qū)間,并求閉區(qū)間上的最值.著重考查了三角恒等變換、三角函數(shù)的圖象與性質等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•天河區(qū)三模)設集合M={x|x2-2x-3<0},N={x|log
1
2
x<0}
,則M∩N等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天河區(qū)三模)某班同學利用寒假在5個居民小區(qū)內選擇兩個小區(qū)逐戶進行一次“低碳生活習慣”的調查,以計算每戶的碳月排放量.若月排放量符合低碳標準的稱為“低碳族”,否則稱為“非低碳族”.若小區(qū)內有至少75%的住戶屬于“低碳族”,則稱這個小區(qū)為“低碳小區(qū)”,否則稱為“非低碳小區(qū)”.已知備選的5個居民小區(qū)中有三個非低碳小區(qū),兩個低碳小區(qū).
(Ⅰ)求所選的兩個小區(qū)恰有一個為“非低碳小區(qū)”的概率;
(Ⅱ)假定選擇的“非低碳小區(qū)”為小區(qū)A,調查顯示其“低碳族”的比例為
12
,數(shù)據(jù)如圖1所示,經過同學們的大力宣傳,三個月后,又進行了一次調查,數(shù)據(jù)如圖2所示,問這時小區(qū)A是否達到“低碳小區(qū)”的標準?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天河區(qū)三模)在長度為1米的線段AB上任取一點P,則點P到A、B兩點的距離都大于
1
8
米的概率為
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天河區(qū)三模)已知O為坐標原點,點M坐標為(-2,1),在平面區(qū)域
x≥0
x+y≤2
y≥0
上取一點N,則使|MN|為最小值時點N的坐標是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天河區(qū)三模)函數(shù)y=f(x)(x∈R)的圖象如圖所示,下列說法正確的是( 。
①函數(shù)y=f(x)滿足f(-x)=-f(x);
②函數(shù)y=f(x)滿足f(x+2)=f(-x);
③函數(shù)y=f(x)滿足f(-x)=f(x);
④函數(shù)y=f(x)滿足f(x+2)=f(x).

查看答案和解析>>

同步練習冊答案