18.已知f(x)的定義域為[-1,3],則g(x)=$\frac{f(2x)}{x-1}$的定義域為( 。
A.[-2,6]B.[-2,1)∪(1,6]C.[-$\frac{1}{2}$,$\frac{3}{2}$]D.[-$\frac{1}{2}$,1)∪(1,$\frac{3}{2}$]

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則$\left\{\begin{array}{l}{-1≤2x≤3}\\{-1≤x≤3}\\{x-1≠0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-\frac{1}{2}≤x≤\frac{3}{2}}\\{-1≤x≤3}\\{x≠1}\end{array}\right.$,即-$\frac{1}{2}$≤x<1或1<x≤$\frac{3}{2}$,
即函數(shù)的定義域為[-$\frac{1}{2}$,1)∪(1,$\frac{3}{2}$],
故選:D.

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知定義在R上的偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,且f(2)=0,則不等式f(x)•x≥0的解集是[2,+∞)∪[-2,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題“x2+y2=0,則x=y=0”的否定命題為( 。
A.若x2+y2=0,則x≠0且y≠0B.若x2+y2=0,則x≠0或y≠0
C.若x2+y2≠0,則x≠0且y≠0D.若x2+y2≠0,則x≠0或y≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{3x-y≤3}\end{array}\right.$,目標(biāo)函數(shù)z=ax+2y僅在點(1,0)處取得最小值,則a的取值范圍是( 。
A.[-6,2]B.(-6,2)C.[-3,1]D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$f(x)=\frac{2}{x}+\frac{1}{1-x}\;(x∈(0,1))$在x=2-$\sqrt{2}$處取到最小值,且最小值是3$+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知Sn為公差不為0的等差數(shù)列{an}的前n項和,且a1=1,S1,S2,S4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}滿足:a5=9,a2+a6=14.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an+qn(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖已知四邊形ABCD是菱形,P是ABCD所在平面外一點,且PB=PD=AB,M是PC的中點,
(1)求證:PA∥平面BDM
(2)求證:平面BDM⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a>0,函數(shù)f(x)=lg(a•2x一a+4)在區(qū)間(-1,+∞)上有意義.
(1)求a的取值范圍;
(2)解關(guān)于x的不等式;x2-(a2+a-2)x+a(a2-2)<0.

查看答案和解析>>

同步練習(xí)冊答案