設函數(shù)f(x)滿足f(-x)=-f(x)(x∈R),且在(0,+∞)上為增函數(shù),且f(1)=0,則不等式
f(x)-f(-x)x
≤0
的解集為
[-1,0)∪(0,1]
[-1,0)∪(0,1]
分析:由f(-x)=-f(x),化簡不等式
f(x)-f(-x)
x
≤0
2f(x)
x
≤0
.再分x>0和x<0時兩種情況加以討論,利用函數(shù)的單調(diào)性和f(1)=0,分別解關于x的不等式得到x的取值范圍.最后綜合可得原不等式的解集.
解答:解:∵函數(shù)f(x)滿足f(-x)=-f(x)(x∈R),
∴f(x)-f(-x)=f(x)+f(x)=2f(x),
因此,不等式
f(x)-f(-x)
x
≤0
等價于
2f(x)
x
≤0
,
化簡得
f(x)≥0
x<0
f(x)≤0
x>0
,
①當x>0時,由于在(0,+∞)上f(x)為增函數(shù)且f(1)=0,
∴由不等式f(x)≤0=f(1),得0<x≤1;
②當x<0時,-x>0,
不等式f(x)≥0化成-f(x)≤0,即f(-x)≤0=f(1),
解之得-x≤1,即-1≤x<0.
綜上所述,原不等式的解集為[-1,0)∪(0,1].
故答案為:[-1,0)∪(0,1]
點評:本題給出函數(shù)的單調(diào)性和奇偶性,求解關于x的不等式.著重考查了函數(shù)的簡單性質(zhì)及其應用、不等式的解法等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:對任意x∈R,都有f(x)=f(2-x)成立,且當x∈(-∞,1)時,(x-1)f′(x)<0(其中f'(x)為f(x)的導數(shù)).設a=f(0),b=f(
1
2
),c=f(3)
,則a、b、c三者的大小關系是( 。
A、a<b<c
B、c<a<b
C、c<b<a
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)滿足f(n+1)=
2f(n)+n
2
(n∈N*),且f(1)=2,則f(20)為( 。
A、95B、97
C、105D、192

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)滿足f(x+y)=f(x)+f(y)(x,y∈R),求證:
(1)f(0)=0;
(2)f(3)=3f(1);
(3)f(
1
2
)=
1
2
f(1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)滿足:對任意的x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]>0,則f(-3)與f(-π)兩個函數(shù)值較大的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設函數(shù)f(x)的定義域為R,若存在常數(shù)M>0,使|f(x)|≤M|x|對一切實數(shù)都成立,則稱函數(shù)f(x) 為“倍約束函數(shù)”.給出下列函數(shù),其中是“倍約束函數(shù)”的為


  1. A.
    f(x)=2
  2. B.
    f(x)=數(shù)學公式
  3. C.
    f(x)=x2
  4. D.
    f(x)是定義在R上的奇函數(shù),且滿足對一切實數(shù)x1,x2,均有|f(x1)-f(x2)|≤2|x1-x2|成立

查看答案和解析>>

同步練習冊答案