【題目】山西省在2019年3月份的高三適應(yīng)性考試中對(duì)數(shù)學(xué)成績(jī)數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績(jī)近似服從正態(tài)分布,現(xiàn)某校隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績(jī)分析,結(jié)果這50名學(xué)生的成績(jī)?nèi)拷橛?5分到145分之間,現(xiàn)將結(jié)果按如下方式分為6組,第一組,第二組,…,第六組,得到如圖所示的頻率分布直方圖:
(1)求全市數(shù)學(xué)成績(jī)?cè)?35分以上的人數(shù);
(2)試由樣本頻率分布直方圖佔(zhàn)計(jì)該校數(shù)學(xué)成績(jī)的平均分?jǐn)?shù);
(3)若從這50名學(xué)生中成績(jī)?cè)?25分(含125分)以上的同學(xué)中任意抽取3人,該3人在全市前13名的人數(shù)記為,求的分布列和期望.
附:若,則,,
.
【答案】(1)800;(2)112;(3)見(jiàn)解析.
【解析】
(1)頻率作為概率,乘以總?cè)藬?shù)即得答案.
(2)首先根據(jù)頻率和為1計(jì)算 ,再根據(jù)平均值公式計(jì)算得到答案.
(3)計(jì)算各個(gè)情況的概率,得出分布列,然后根據(jù)期望公式得到答案.
(1)全市數(shù)學(xué)成績(jī)?cè)?35分以上的頻率為0.08,以頻率作為概率,
可得全市數(shù)學(xué)成績(jī)?cè)?35分以上的人數(shù)為人;
(2)由頻率分布直方圖可知的頻率為
,
∴估計(jì)該校全體學(xué)生的數(shù)學(xué)平均成績(jī)約為
;
(2)由于,根據(jù)正態(tài)分布:,
故,即.
∴前13名的成績(jī)?nèi)吭?35分以上.
根據(jù)頻率分布直方圖可知這50人中成績(jī)?cè)?35以上(包括135分)的有人,而在的學(xué)生有.
∴的取值為0,1,2,3.
,,
,.
∴的分布列為
0 | 1 | 2 | 3 | |
數(shù)學(xué)期望值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書(shū)中把三角形的田稱(chēng)為“圭田”,把直角梯形的田稱(chēng)為“邪田”,稱(chēng)底是“廣”,稱(chēng)高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機(jī)種植一株茶樹(shù),求該株茶樹(shù)恰好種在圭田內(nèi)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)停車(chē)場(chǎng)的收費(fèi)標(biāo)準(zhǔn)為:每車(chē)每次停車(chē)時(shí)間不超過(guò)2小時(shí)免費(fèi),超過(guò)2小時(shí)的部分每小時(shí)收費(fèi)1元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲乙兩人相互獨(dú)立到停車(chē)場(chǎng)停車(chē)(各停車(chē)一次),且兩人停車(chē)的時(shí)間均不超過(guò)5小時(shí),設(shè)甲、乙兩人停車(chē)時(shí)間(小時(shí))與取車(chē)概率如下表所示:
(1)求甲、乙兩人所付車(chē)費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付停車(chē)費(fèi)之和為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)在點(diǎn)處與軸相切
(1)求的值,并求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)設(shè)函數(shù).若存在區(qū)間,使得函數(shù)在上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醬油廠(chǎng)對(duì)新品種醬油進(jìn)行了定價(jià),在各超市得到售價(jià)與銷(xiāo)售量的數(shù)據(jù)如下表:
單價(jià)(元) | 5 | 5.2 | 5.4 | 5.6 | 5.8 | 6 |
銷(xiāo)量(瓶) | 9.0 | 8.4 | 8.3 | 8.0 | 7.5 | 6.8 |
(1)求售價(jià)與銷(xiāo)售量的回歸直線(xiàn)方程;( ,)
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/瓶,為使工廠(chǎng)獲得最大利潤(rùn)(利潤(rùn)=銷(xiāo)售收入成本),該產(chǎn)品的單價(jià)應(yīng)定為多少元?
相關(guān)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類(lèi)產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元。
(1)分別寫(xiě)出兩類(lèi)產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的最小值為1,且.
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)m的取值范圍;
(3)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com