9.已知F1,F(xiàn)2為等軸雙曲線C的焦點(diǎn),點(diǎn)P在C上,|PFl|=2|PF2|,則cos∠F1PF2=( 。
A.$\frac{1}{4}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

分析 可設(shè)雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{a}^{2}}$=1,根據(jù)雙曲線的定義,設(shè)|PF1|=2|PF2|=2m,利用余弦定理,即可求cos∠F1PF2的值.

解答 解:由題意可設(shè)雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{a}^{2}}$=1,
設(shè)|PF1|=2|PF2|=2m,
則根據(jù)雙曲線的定義,|PF1|-|PF2|=2a,
可得m=2a,
即為|PF1|=4a,|PF2|=2a,又雙曲線C為等軸雙曲線,
|F1F2|=2c=2$\sqrt{2}$a,
由余弦定理,可得cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}|•|P{F}_{2}|}$
=$\frac{16{a}^{2}+4{a}^{2}-8{a}^{2}}{2•4a•2a}$=$\frac{3}{4}$.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的定義、方程和性質(zhì),注意運(yùn)用三角形的余弦定理,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=$\frac{1}{3}$x3-x2單調(diào)遞減區(qū)間是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(3)=0,則xf(x)<0的解集是(-3,0)∪(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{{{x^2}-ax+b}}{e^x}$經(jīng)過點(diǎn)(0,3),且在該點(diǎn)處得切線與x軸平行
(1)求a,b的值;
(2)若x∈(t,t+1),其中t>-2,討論函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了促進(jìn)人口的均衡發(fā)展,我國(guó)從2016年1月1日起,全國(guó)統(tǒng)一實(shí)施全面放開兩孩政策.為了解適齡國(guó)民對(duì)放開生育二胎政策的態(tài)度,某部門選取70后和80后年齡段的人作為調(diào)查對(duì)象,進(jìn)行了問卷調(diào)查,其中,持“支持生二胎”、“不支持生二胎”和“保留意見”態(tài)度的人數(shù)如表所示:
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,其中持“支持”態(tài)度的人共36人,求n的值;
(2)在持“不支持”態(tài)度的人中,仍用分層抽樣的方法抽取5人,并將其看成一個(gè)總體,從這5人中任意選取2人,求至少有1個(gè)80后的概率.
支持保留不支持
80后780420200
70后120180300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“m=1”是“直線mx+(m+1)y-1=0和直線2x-my+1=0垂直”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù) f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)當(dāng)a=$\frac{1}{2}$,b=$-\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)令F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$(0<x<3),其圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k≤$\frac{1}{2}$恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=0,b=-1時(shí),方程f(x)=mx在區(qū)間[1,e2]內(nèi)恰有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.為了得到函數(shù)y=3sin2x的圖象,只要把y=3sin(2x+$\frac{π}{5}$)的圖象上所有的點(diǎn)(  )
A.向左平移$\frac{π}{10}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{10}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{5}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{5}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,△ABC的外接圓半徑為R,若C=$\frac{3π}{4}$,且sin(A+C)=$\frac{BC}{R}$•cos(A+B).
(1)證明:BC,AC,2BC成等比數(shù)列;
(2)若△ABC的面積是1,求邊AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案