已知函數(shù)f(x)=x2-2lnx,h(x)=x2-x+a.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)設函數(shù)k(x)=f(x)-h(x),若函數(shù)k(x)在[1,3]上恰有兩個不同零點,求實數(shù)a的取值范圍.
【答案】
分析:(I)先在定義域內(nèi)求出f′(x)=0的值,再討論滿足f′(x)=0的點附近的導數(shù)的符號的變化情況,來確定極值;
(II)先求出函數(shù)k(x)的解析式,然后研究函數(shù)k(x)在[1,3]上的單調(diào)性,根據(jù)函數(shù)k(x)在[1,3]上恰有兩個不同零點,建立不等關系
,最后解之即可.
解答:解:(Ⅰ)∵
,令f′(x)=0,∵x>0∴x=
所以f(x)的極小值為1,無極大值.(7分)
(Ⅱ)∵
x | (0,1) | 1 | (1,+∞) |
f′(x) | _ | | + |
f(x) | 減 | 1 | 增 |
,
若k′(x)=0,則x=2
當x∈[1,2)時,f′(x)<0;
當x∈(2,3]時,f′(x)>0.
故k(x)在x∈[1,2)上遞減,在x∈(2,3]上遞增.(10分)
∴
.
所以實數(shù)a的取值范圍是:(2-2ln2,3-2ln3](15分)
點評:本題主要考查了利用導數(shù)研究函數(shù)的極值,以及函數(shù)的零點等有關基礎知識,考查運算求解能力、推理論證能力,考查數(shù)形結合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.