已知函數(shù)f(x)為R上的減函數(shù),則滿足f(|x|)<f(1)的實(shí)數(shù)x的取值范圍是( 。
分析:由函數(shù)的單調(diào)性可得|x|與1的大小,轉(zhuǎn)化為解絕對(duì)值不等式,解之即可求出所求.
解答:解:f(x)為R上的減函數(shù),且滿足f(|x|)<f(1)
∴由已知得|x|>1,解得x<-1或x>1
故選D.
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性的應(yīng)用:利用單調(diào)性解不等式,其方法是將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為R上的連續(xù)函數(shù)且存在反函數(shù)f-1(x),若函數(shù)f(x)滿足下表:
精英家教網(wǎng)
那么,不等式|f-1(x-1)|<2的解集是( 。
A、{x|
5
2
<x<4}
B、{x|
3
2
<x<3}
C、{x|1<x<2}
D、{x|1<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f (x)為R上的奇函數(shù),且在(0,+∞)上為增函數(shù),
(1)求證:函數(shù)f (x)在(-∞,0)上也是增函數(shù);
(2)如果f (
12
)=1,解不等式-1<f (2x+1)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為R上的減函數(shù),則滿足f(x2-3x-3)<f(1)的實(shí)數(shù)x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為R上的偶函數(shù),當(dāng)x>0時(shí),f(x)=
1
x
,設(shè)a=f(
3
2
),b=f(log2
1
2
),c=f(
32
),則a,b,c的大小關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案