【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1 .
(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大。
【答案】
(1)證明:∵四邊形BB1C1C是矩形,∴BC⊥BB1,
∵平面BB1C1C⊥底面ABB1N,平面BB1C1C∩底面ABB1N=BB1,BC平面BB1C1C,
∴BC⊥平面ABB1N,
以B為原點(diǎn),以BA,BB1,BC為坐標(biāo)軸建立空間直角坐標(biāo)系B﹣xyz,
設(shè)AB=1,則B(0,0,0),N(1,1,0),B1(0,2,0),C1(0,2,1),C(0,0,1)
∴ =(1,1,0), =(﹣1,1,0), =(0,0,1),
∴ =﹣1+1=0, =0,
∴BN⊥NB1,BN⊥B1C1,又NB1∩B1C1=B1,
∴BN⊥平面C1B1N.
(2)解: =(﹣1,1,1), =(﹣1,﹣1,1), =(0,2,0),
設(shè)平面BNC1的法向量為 =(x,y,z),則 , =0,
∴ ,令x=1得 =(1,﹣1,2),
同理可得平面CNC1的法向量為 =(1,0,1),
∴cos< >= = .
∴二面角C﹣C1N﹣B的大小為30°.
【解析】(1)證明BC⊥平面ABB1N,建立空間坐標(biāo)系,利用向量證明BN⊥NB1,NB⊥B1C1,故而得出結(jié)論;(2)求出兩平面的法向量,計(jì)算法向量的夾角即可得出二面角的大。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,若a2+2,a4+4,a6+6構(gòu)成等比數(shù)列,這數(shù)列{an}的公差d等于( )
A.1
B.﹣1
C.2
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚(yú)技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚(yú)時(shí),某種魚(yú)在一定的條件下,每尾魚(yú)的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過(guò)4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),是的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚(yú)的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷正確的是 (把正確的序號(hào)都填上).
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
②若函數(shù)在區(qū)間上遞增,在區(qū)間上也遞增,則函數(shù)必在上遞增;
③f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x、y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù).Ks
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且滿足bcosC+ c=a.
(1)求△ABC的內(nèi)角B的大小;
(2)若△ABC的面積S= b2 , 試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知cos(75°+α)=,α是第三象限角,
(1)求sin(75°+α) 的值.
(2)求cos(α-15°) 的值.
(3)求sin(195°-α)+cos(105o-α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍
(2)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】醫(yī)學(xué)上所說(shuō)的“三高”通常是指血脂增高、血壓增高、血糖增高等疾。疄榱私狻叭摺奔膊∈欠衽c性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;
患三高疾病 | 不患三高疾病 | 合計(jì) | |
男 | 6 | 30 | |
女 | |||
合計(jì) | 36 |
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為患“三高”疾病與性別有關(guān)? 下列的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=2,an+1=2﹣ (n=1,2,3,…).
(Ⅰ)求a2 , a3 , a4的值,猜想出數(shù)列的通項(xiàng)公式an;
(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com