【題目】已知cos(75°+α)=,α是第三象限角,

(1)求sin(75°+α) 的值.

(2)求cos(α-15°) 的值.

(3)求sin(195°-α)+cos(105oα)的值.

【答案】(1);(2);(3) .

【解析】試題分析:(1, 是第三象限角,可得是第四象限角,根據(jù)同角三角函數(shù)之間的關(guān)系求解即可;2直接根據(jù)誘導(dǎo)公式可得結(jié)果;(3)根據(jù)誘導(dǎo)公式結(jié)合(2的結(jié)論可得結(jié)果.

試題解析:(1)∵cos(75°+α)=>0,α是第三象限角,

∴75°+α是第四象限角,

且sin(75°+α)=-=-.

(2)cos(α-15°)= cos[90°-(75°+α)]= sin(75°+α)= -

(3)∴sin(195°-α) +cos(105oα)

=sin[180°+(15°-α)]+cos[180o o-(75°+α)]

=-sin(15°-α) -cos(75°+α)

=-sin[90°-(75°+α)] -cos(75°+α)

=-2cos(75°α).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防甲型流感,某學(xué)校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時室內(nèi)每立方米空氣中的含藥量與時間成正比例,藥物燃燒完后滿足,如圖所示,現(xiàn)測得藥物8燃畢,此時室內(nèi)空氣中每立方米的含藥量為6,請按題中所供給的信息,解答下列各題.

(1)求關(guān)于的函數(shù)解析式;

(2)研究表明,當空氣中每立方米的含藥量不低于且持續(xù)時間不低于時才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為的半圓形(為圓心)鋁皮上截取一塊矩形材料,其中在直徑上,點在圓周上.

(1)設(shè),將矩形的面積表示成的函數(shù),并寫出其定義域;

(2)怎樣截取,才能使矩形材料的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)h(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0 , h(x0)),記函數(shù)h(x)的導(dǎo)函數(shù)為g(x),則有g(shù)′(x0)=0,設(shè)函數(shù)f(x)=x3﹣3x2+2,則f( )+f( )+…+f( )+f( )=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1
(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2=4,直線l:y=x,則圓C上任取一點A到直線l的距離小于1的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測可知,進入21世紀以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長.記2009年為第1年,且前4年中,第年與年產(chǎn)量萬件之間的關(guān)系如下表所示:

近似符合以下三種函數(shù)模型之一: = .

(1)找出你認為最適合的函數(shù)模型,并說明理由,然后選取其中你認為最適合的數(shù)據(jù)求出相應(yīng)的解析式;

(2)因遭受某國對該產(chǎn)品進行反傾銷的影響,2015年的年產(chǎn)量比預(yù)計減少,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=aln(x+1)+ x2﹣x,其中a為實數(shù).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:2f(x2)﹣x1>0.

查看答案和解析>>

同步練習(xí)冊答案