9.函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,則f(x)的解析式是( 。
A.$f(x)=sin(x+\frac{π}{6})$B.$f(x)=sin(x+\frac{π}{3})$C.$f(x)=sin(2x+\frac{π}{6})$D.$f(x)=sin(2x+\frac{π}{3})$

分析 根據(jù)圖象的最高點和最低點求出A,根據(jù)圖象求周期可得ω,因為圖象過($\frac{π}{6},1$)帶入求解Φ,即可求函數(shù)f(x)的解析式;

解答 解:(1)由題設(shè)圖象知,最高點1,最低點-1,
∴A=1,
周期$\frac{1}{2}$T=$\frac{2π}{3}-\frac{π}{6}$,
則T=π
∴ω=$\frac{2π}{T}$=2.
∵點($\frac{π}{6},1$)在函數(shù)圖象上,
則1=sin(2×$\frac{π}{6}$+Φ),
∴$\frac{π}{3}$+Φ=$\frac{π}{2}+2kπ$,(k∈Z).
∵$-\frac{π}{2}$<Φ$<\frac{π}{2}$,
∴Φ=$\frac{π}{6}$.
故得f(x)的解析式為f(x)=sin(2x+$\frac{π}{6}$)
故選C.

點評 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.要求熟練掌握函數(shù)圖象之間的變化關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+sin(\frac{π}{4}+x)sin(\frac{π}{4}-x)$.
( I)求函數(shù)f(x)對稱軸方程和單調(diào)遞增區(qū)間;
( II)對任意$x∈[-\frac{π}{6},\frac{π}{6}]$,f(x)-m≥0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$f(x)=\left\{\begin{array}{l}x+1,({0≤x<1})\\{2^x}-\frac{1}{2},({x≥1})\end{array}\right.$,設(shè)a>b≥0,若f(a)=f(b),則b•f(a)的取值范圍是(  )
A.(1,2]B.$({\frac{3}{4},2}]$C.$[{\frac{3}{4},2})$D.$({\frac{1}{2},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=2sin({ωx+φ})({ω>0,-\frac{π}{2}<φ<\frac{π}{2}})$的部分圖象如圖所示,則下列結(jié)論錯誤的是( 。
A.$φ=-\frac{π}{4}$
B.函數(shù)f(x)在$[{-\frac{π}{4},\frac{3π}{4}}]$上單調(diào)遞增
C.函數(shù)f(x)的一條對稱軸是$x=\frac{3π}{4}$
D.為了得到函數(shù)f(x)的圖象,只需將函數(shù)y=2cosx的圖象向右平移$\frac{π}{4}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.經(jīng)過點A(1,2)并且在兩個坐標軸上的截距的絕對值相等的直線方程為( 。
A.y=2x或x-y+1=0B.y=2x,x+y-3=0
C.x+y-3=0,或x-y+1=0D.y=2x,或x+y-3=0,或x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在空間直角坐標系中,點A(1,-2,3)與點B(-1,-2,-3)關(guān)于(  )對稱.
A.x軸B.y軸C.z軸D.原點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=$\frac{lnx}{x}$,若f′(x0)=0,則x0=( 。
A.e2B.eC.1D.ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是(  )
A.若l∥α,l∥β,則α∥βB.若l∥α,l⊥β,則α⊥βC.若l⊥α,α⊥β,則l∥βD.若l∥α,α⊥β,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)△ABC三個內(nèi)角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜求積”公式為$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$.若a2sinC=4sinA,(a+c)2=12+b2,則用“三斜求積”公式求得△ABC的面積為( 。
A.$\sqrt{3}$B.2C.3D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案