【題目】
已知幾何體A—BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大。
(2)求異面直線DE與AB所成角的余弦值;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:的準(zhǔn)線經(jīng)過點(diǎn).
(1)求拋物線的方程;
(2)設(shè)是原點(diǎn),直線恒過定點(diǎn),且與拋物線交于,兩點(diǎn),直線與直線,分別交于點(diǎn),.請(qǐng)問:是否存在以為直徑的圓經(jīng)過軸上的兩個(gè)定點(diǎn)?若存在,求出兩個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為,點(diǎn)M的極坐標(biāo)為,若直線l過點(diǎn)P,且傾斜角為,圓C以M點(diǎn)為圓心,4為半徑.
求直線l和圓C的極坐標(biāo)方程;
直線l與x軸y軸分別交于A,B兩點(diǎn),Q為圓C上一動(dòng)點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在折線中,,,分別是的中點(diǎn),若折線上滿足條件的點(diǎn)至少有個(gè),則實(shí)數(shù)的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),,
的重心分別為.若原點(diǎn)在以線段
為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個(gè)命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點(diǎn),則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線的斜率為2的切線方程;
(2)證明:;
(3)確定實(shí)數(shù)的取值范圍,使得存在,當(dāng)時(shí),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
對(duì)定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意的都有,且對(duì)任意的都有恒成立,則稱函數(shù)為區(qū)間上的“U型”函數(shù)。
(1)求證:函數(shù)是上的“U型”函數(shù);
(2)設(shè)是(1)中的“U型”函數(shù),若不等式對(duì)一切的恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的“U型”函數(shù),求實(shí)數(shù)和的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com