圓x2+y2-4=0與圓x2+y2-6x-8y+16=0的位置關(guān)系為(  )
A、內(nèi)切B、外切C、相交D、相離
考點:圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:把第二個圓的方程化為標準方程,找出圓心A的坐標和半徑r,再由第一個圓的方程找出圓心B的坐標和半徑R,利用兩點間的距離公式求出兩圓心間的距離d,發(fā)現(xiàn)d=R+r,從而判斷出兩圓位置關(guān)系是外切.
解答:解:把圓x2+y2-6x-8y+16=0化為標準方程得:(x-3)2+(y-4)2=9,
∴圓心A的坐標為(3,4),半徑r=3,
由圓x2+y2=4,得到圓心B坐標為(0,0),半徑R=2,
兩圓心間的距離d=|AB|=
(3-0)2+(4-0)2
=5,
∵2+3=5,即d=R+r,
則兩圓的位置關(guān)系是外切.
故選:B.
點評:此題考查了圓的標準方程,兩點間的基本公式,以及圓與圓位置關(guān)系的判斷,圓與圓位置關(guān)系的判斷方法為:當(dāng)0≤d<R-r時,兩圓內(nèi)含;當(dāng)d=R-r時,兩圓內(nèi)切;當(dāng)R-r<d<R+r時,兩圓相交;當(dāng)d=R+r時,兩圓外切;當(dāng)d>R+r時,兩圓相離(d表示兩圓心間的距離,R及r分別表示兩圓的半徑).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC滿足∠A=
π
2
,AB=2,則下列三個式子:①
AB
AC
,②
BA
BC
,③
CA
CB
中為定值的式子的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x、y滿足約束條件
x+y-2≤0
x-2y-2≤0
2x-y+2≥0
,若z=y-ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為( 。
A、
1
2
或-1
B、2或
1
2
C、2或1
D、2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1經(jīng)過點A(3,0),直線l2經(jīng)過點B(0,4),且l1∥l2,則l1與l2的距離d的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
x(x≥8)的值域是( 。
A、R
B、(0,
1
256
]
C、(-∞,
1
256
]
D、[
1
256
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α垂直于棱長為2的正方體ABCD-A1B1C1D1的對角線BD1,則平面α截正方體所得截面面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=
π
8

(1)求φ;
(2)用“五點法”畫出函數(shù)y=f(x)在一個周期內(nèi)的簡圖.(要求列表、描點、連線);
(3)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={-1,0,1,2},A={-1,1},則∁UA=(  )
A、{-1,0,1,2}
B、{0,1,2}
C、{-1,0,2}
D、{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期第二次月考試卷文科數(shù)學(xué)試卷(解析版) 題型:填空題

,則的值是 ___________.

 

查看答案和解析>>

同步練習(xí)冊答案