5.某射擊手射擊一次命中的概率是0.7,連續(xù)兩次均射中的概率是0.4,已知某次射中,則隨后一次射中的概率是( 。
A.$\frac{7}{10}$B.$\frac{6}{7}$C.$\frac{4}{7}$D.$\frac{2}{7}$

分析 設(shè)“某次射中”為事件A,“隨后一次的射中”為事件B,則P(AB)=0.4,P(A)=0.7,利用條件概率公式P(B|A)=$\frac{P(AB)}{P(A)}$,即可得結(jié)論.

解答 解:設(shè)“某次射中”為事件A,“隨后一次的射中”為事件B,
則P(AB)=0.4,P(A)=0.7,
∴P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{4}{7}$,
故選:C.

點評 本題考查條件概率公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.從4名男生和2名女生中任選3人參加演講比賽,設(shè)隨機(jī)變量X表示所選3人中女生的人數(shù).
(1)求X的分布列;
(2)求X的均值與方差;
(3)求“所選3人中女生人數(shù)X≤1”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求數(shù)列{$\frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若X,Y是離散型隨機(jī)變量,且Y=aX+b,其中a,b為常數(shù),則有E(Y)=aE(X)+b.利用這個公式計算E(E(X)-X)=( 。
A.0B.1C.2D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知P點是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上異于頂點的任一點,且∠F1PF2=60°,則這樣的點P有4個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計算2A${\;}_{5}^{3}$-${A}_{6}^{2}$=90.(請用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在銳角△ABC中,AC=6,B=2A,則BC的取值范圍為( 。
A.(3,3$\sqrt{2}$)B.(2$\sqrt{3}$,3$\sqrt{2}$)C.(3$\sqrt{2}$,+∞)D.(0,3$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個單位向量,它們的夾角是60°,則(2$\overrightarrow{e_1}$+$\overrightarrow{e_2}$)•(-3$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$)=$-\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.求使1+2+3+…+n>100的最小整數(shù)n的值,下面算法語句正確的為( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案