【題目】設(shè)分別為橢圓的左、右焦點,點為橢圓的左頂點,點為橢圓的上頂點,且.
(1)若橢圓的離心率為,求橢圓的方程;
(2)設(shè)為橢圓上一點,且在第一象限內(nèi),直線與軸相交于點,若以為直徑的圓經(jīng)過點,證明:點在直線上.
【答案】(1);(2)見解析
【解析】
試題分析:(1)由題意離心率以及可以建立關(guān)于,,的方程組,求得,,的值即可求解;(2)設(shè),根據(jù)題意將,用含的代數(shù)式表示,消去參數(shù)后即可得到,所滿足的關(guān)系式,從而得證.
試題解析:(1)設(shè),由題意,得,且,得,,,
∴橢圓的方程為;(2)由題意,得,∴橢圓的方程,則,,,設(shè),由題意知,則直線的斜率,直線的方程為,當(dāng)時,,即點,直線的斜率為,∵以為直徑的圓經(jīng)過點,∴,∴,化簡得,又∵為橢圓上一點,且在第一象限內(nèi),∴,,,由①②,解得,,∴,即點在直線上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),
(1)當(dāng)BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當(dāng)三棱錐A﹣BCD的體積最大時,設(shè)點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均為正數(shù)的數(shù)列{an}滿足:Sn為數(shù)列{an}的前n項和,且2,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若cn=nan , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小型工廠安排甲、乙兩種產(chǎn)品的生產(chǎn),已知工廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需要的原材料A,B,C的數(shù)量和一周內(nèi)可用資源數(shù)量如下表所示:
原材料 | 甲(噸) | 乙(噸) | 資源數(shù)量(噸) |
A | 1 | 1 | 50 |
B | 4 | 0 | 160 |
C | 2 | 5 | 200 |
如果甲產(chǎn)品每噸的利潤為300元,乙產(chǎn)品每噸的利潤為200元,那么適當(dāng)安排生產(chǎn)后,工廠每周可獲得的最大利潤為______元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 平面平面為等邊三角形,, 過作平面交分別于點,設(shè).
(1)求證:平面;
(2)求的值, 使得平面與平面所成的銳二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓=1(a>b>0)的左、右焦點分別為F1,F2,P是橢圓上一點,|PF1|=λ|PF2|,∠F1PF2=,則橢圓離心率的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱ABCD﹣A1B1C1D1的底面ABCD為正方形,AA1⊥AC,M、N分別為棱AA1、CC1的中點.
(1)求證:直線MN⊥平面B1BD;
(2)已知AA1=AB,AA1⊥AB,取線段C1D1的中點Q,求二面角Q﹣MD﹣N的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com