【題目】已知數(shù)列的前n項(xiàng)和為,且n、成等差數(shù)列,.

1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)若數(shù)列中去掉數(shù)列的項(xiàng)后余下的項(xiàng)按原順序組成數(shù)列,求的值.

【答案】1)證明見解析,;(211202.

【解析】

1)由n,,成等差數(shù)列,可得,兩式相減,由等比數(shù)列的定義可得是等比數(shù)列,可求數(shù)列的通項(xiàng)公式;

2)由(1)中的可求出,根據(jù)求出數(shù)列,中的公共項(xiàng),分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,可得答案.

1)證明:因?yàn)?/span>n,成等差數(shù)列,所以,①

所以.

①-②,得,所以.

又當(dāng)時(shí),,所以,所以,

故數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,

所以,即.

2)根據(jù)(1)求解知,,,所以,

所以數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列.

又因?yàn)?/span>,,,,,,

,,,

所以

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的圖象經(jīng)過點(diǎn).

(1)求拋物線的方程和焦點(diǎn)坐標(biāo);

(2)直線交拋物線,不同兩點(diǎn),且,位于軸兩側(cè),過點(diǎn),分別作拋物線的兩條切線交于點(diǎn),直線軸的交點(diǎn)分別記作,.記的面積為,面積為,面積為,試問是否為定值,若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AM過點(diǎn)且與直線相切.

(1)求動(dòng)圓圓心M的軌跡C的方程;

(2)斜率為的直線l經(jīng)過點(diǎn)且與曲線C交于AB兩點(diǎn),線段AB的中垂線交x軸于點(diǎn)N,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,,M是橢圓E上的一個(gè)動(dòng)點(diǎn),且的面積的最大值為.

1)求橢圓E的標(biāo)準(zhǔn)方程,

2)若,四邊形ABCD內(nèi)接于橢圓E,,記直線ADBC的斜率分別為,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,.

1)求證:;

2)若,求平面和平面所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,ACBC,AB2BC,D為線段AB上一點(diǎn),且AD3DBPD⊥平面ABC,PA與平面ABC所成的角為45°

1)求證:平面PAB⊥平面PCD

2)求二面角PACD的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為4,其圖象關(guān)于直線對稱,給出下面四個(gè)結(jié)論:

①函數(shù)在區(qū)間上先增后減;②將函數(shù)的圖象向右平移個(gè)單位后得到的圖象關(guān)于原點(diǎn)對稱;③點(diǎn)是函數(shù)圖象的一個(gè)對稱中心;④函數(shù)上的最大值為1.其中正確的是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有兩個(gè)零點(diǎn),證明:

(2)設(shè)函數(shù)的兩個(gè)零點(diǎn)為,.證明:

查看答案和解析>>

同步練習(xí)冊答案