【題目】已知動圓M過點且與直線相切.
(1)求動圓圓心M的軌跡C的方程;
(2)斜率為的直線l經(jīng)過點且與曲線C交于A,B兩點,線段AB的中垂線交x軸于點N,求的值.
【答案】(1)(2)
【解析】
(1)已知條件轉(zhuǎn)化成圓心M到定點的距離與定直線的距離相等,再利用拋物線的定義求得圓心M的軌跡C的方程;
(2)設直線l的方程為,,,把直線方程代入拋物線方程,利用根與系數(shù)的關(guān)系,得到的中點坐標,進而得到線段的中垂線方程,令得到點的坐標,把弦長和線段都用表示,再進行比值即可得答案.
(1)由已知可得,點M到點的距離等于點M到直線的距離,所以點M的軌跡是拋物線.
點P為拋物線的焦點,直線即為拋物線的準線.
設拋物線C的方程為,所以,所以,
故動圓圓心M的軌跡C的方程為.
(2)由已知可得直線l的方程為,記,.
由消去y整理可得.
由根與系數(shù)關(guān)系可得,所以.
所以AB的中點坐標為.
所以線段AB的中垂線方程為.
令,可得,所以.
所以.
又由拋物線的定義可知.
所以.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,,∠ABD=∠ADB.
(Ⅰ)求證:;
(Ⅱ)若,,,,,點為的中點,求平面切割三棱錐得到的上下兩個幾何體的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校開展“我身邊的榜樣”評選活動,現(xiàn)對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.
“我身邊的榜樣”評選選票 | ||
候選人 | 符號 | 注: 1.同意畫“○”,不同意畫“×”. 2.每張選票“○”的個數(shù)不超過2時才為有效票. |
甲 | ||
乙 | ||
丙 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于非負整數(shù)集合(非空),若對任意,或者,或者,則稱為一個好集合.以下記為的元素個數(shù).
(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)
(2)求出所有滿足的好集合.(同時說明理由)
(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分數(shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.
(1)求的值;
(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關(guān)?
文科生 | 理科生 | 合計 | |
獲獎 | 6 | ||
不獲獎 | |||
合計 | 400 |
(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數(shù)為,求的分布列及數(shù)學期望.
附:,其中.
.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中點,AC,BD交于點O.
(1)求證:OE∥平面PBC;
(2)求三棱錐E﹣PBD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國衛(wèi)生運動,從人居環(huán)境改善、飲食習慣、社會心理健康、公共衛(wèi)生設施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習,提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機收集了該區(qū)居民六類日常生活習慣的有關(guān)數(shù)據(jù).六類習慣是:(1)衛(wèi)生習慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:
衛(wèi)生習慣狀況類 | 垃圾處理狀況類 | 體育鍛煉狀況類 | 心理健康狀況類 | 膳食合理狀況類 | 作息規(guī)律狀況類 | |
有效答卷份數(shù) | 380 | 550 | 330 | 410 | 400 | 430 |
習慣良好頻率 | 0.6 | 0.9 | 0.8 | 0.7 | 0.65 | 0.6 |
假設每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達到良好標準相互獨立.
(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習慣良好者的概率;
(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣的概率;
(3)利用上述六類習慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習慣良好者,“”表示任選一位第k類受訪者不是習慣良好者().寫出方差,,,,,的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環(huán)保關(guān)注者”與性別有關(guān)?
(2)若問卷得分不低于80分的人稱為“環(huán)保達人”.視頻率為概率.
①在我市所有“環(huán)保達人”中,隨機抽取3人,求抽取的3人中,既有男“環(huán)保達人”又有女“環(huán)保達人”的概率;
②為了鼓勵市民關(guān)注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com