在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段為垂足.

(1)求線段中點M的軌跡C的方程;

(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設N是過點(,0),且以言為方向向量的直線上一動點,滿足 (O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

解:(1)設M(x,y)是所求曲線上的任意一點,P()是方程的圓上的任意一點,則.

         則有:,即,代入得,

         軌跡C 的方程為.

    (2)當直線l的斜率不存在時,與橢圓無交點.

         所以設直線l的方程為y=k(x+2),與橢圓交于兩點,N點所在直線方程為.

         由得(4+.

         由.

         即

        

,即,∴四邊形OANB為平行四邊形

假設存在矩形OANB,則,即,

于是有     得.

設N(),由,

即點N在直線x=-上. ∴存在直線l使四邊形OANB為矩形,

直線l的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程.
(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設N是過點(-
4
17
,0),且以言
a
=(0,1)
為方向向量的直線上一動點,滿足
ON
=
OA
+
OB
(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省模擬題 題型:解答題

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足,
(1)求線段PP′中點M的軌跡C的方程;
(2)過點Q(-2,0)作直線l與曲線C交于A、B兩點,設N是過點(,0),且以為方向向量的直線上一動點,滿足(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段為垂足.

(1)求線段中點M的軌跡C的方程;

(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設N是過點(,0),且以言為方向向量的直線上一動點,滿足 (O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省西安市西工大附中高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程.
(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設N是過點(,0),且以言為方向向量的直線上一動點,滿足(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年山東省日照市五蓮縣院西中學高考數(shù)學模擬試卷1(理科)(解析版) 題型:解答題

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程.
(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設N是過點(,0),且以言為方向向量的直線上一動點,滿足(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案