【題目】如圖,四面體ABCD中,O是BD的中點(diǎn),CA=CB=CD=BD=2,AB=AD=.
(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的大;
(3)求二面角O﹣AC﹣D的大。
【答案】(1)證明過程詳見解析(2) (3)
【解析】
(1)設(shè)是的中點(diǎn),由等腰三角形的性質(zhì)可得,根據(jù)勾股定理可證明,從而證明平面;(2)利用公式 ,直接求異面直線與所成角的的余弦值,然后求出角的大;(3)利用射影面的面積與被射影面的面積的比,求二面角的余弦值,從而可得二面角的大小.
(1)設(shè)O是等腰直角三角形ABD斜邊BD的中點(diǎn),
所以有AO⊥BD,可求得AO=1,CO=,又有AC=2
所以∠AOC=90°,即AO⊥CO
BD,CO是平面BCD內(nèi)兩條相交直線,故有AO⊥平面BCD.
(2)由(1)可知BD⊥面AOC,
所以面BCD⊥面AOC,AO=1,CO=,AC=2
A點(diǎn)在BCD面內(nèi)的投影為O,
cos<AB,CD>=cos∠ABDcos∠BDC==
異面直線AB與CD所成角的大小為:arccos.
(3)三角形AOC的面積為: =;三角形ADC的面積為: =;
所以二面角O﹣AC﹣D的余弦為:,
二面角O﹣AC﹣D的大小為:arccos.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,且經(jīng)過點(diǎn)M(1,),過點(diǎn)P(2,1)的直線l與橢圓C相交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為比較甲乙兩地某月12時(shí)的氣溫狀況,選取該月5天中12時(shí)的氣溫?cái)?shù)據(jù)(單位:)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月12時(shí)的平均氣溫低于乙地該月12時(shí)的平均氣溫;
②甲地該月12時(shí)的平均氣溫高于乙地該月12時(shí)的平均氣溫;
③甲地該月12時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月12時(shí)的氣溫的標(biāo)準(zhǔn)差;
④甲地該月12時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月12時(shí)的氣溫的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的最小值為-1,且關(guān)于的方程的兩根為0和-2.
(1)求函數(shù)的解析式;
(2)設(shè)其中,求函數(shù)在時(shí)的最大值;
(3)若(為實(shí)數(shù)),對(duì)任意,總存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓貧困地區(qū)的孩子們過一個(gè)溫暖的冬天,某校陽光志愿者社團(tuán)組織“這個(gè)冬天不再冷”冬衣募捐活動(dòng),共有50名志愿者參與.志愿者的工作內(nèi)容有兩項(xiàng):①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實(shí)際情況,只參與其中的某一項(xiàng)工作.相關(guān)統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)如果用分層抽樣的方法從參與兩項(xiàng)工作的志愿者中抽取5人,再?gòu)倪@5人中選2人,那么“至少有1人是參與班級(jí)宣傳的志愿者”的概率是多少?
(2)若參與班級(jí)宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓,稱圓為橢圓的“伴隨圓”.已知點(diǎn)是橢圓上的點(diǎn)
(1)若過點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),求被橢圓的伴隨圓所截得的弦長(zhǎng):
(2)是橢圓上的兩點(diǎn),設(shè)是直線的斜率,且滿足,試問:直線是否過定點(diǎn),如果過定點(diǎn),求出定點(diǎn)坐標(biāo),如果不過定點(diǎn),試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于三次函數(shù),定義是的導(dǎo)函數(shù)的導(dǎo)函數(shù),經(jīng)過討論發(fā)現(xiàn)命題:“一定存在實(shí)數(shù),使得成立”為真,請(qǐng)你根據(jù)這一結(jié)論判斷下列命題:
①一定存在實(shí)數(shù),使得成立;②一定存在實(shí)數(shù),使得成立;③若,則;④若存在實(shí)數(shù),且滿足:,則函數(shù)在上一定單調(diào)遞增,所有正確的序號(hào)是( )
A. ①② B. ①③ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知?jiǎng)狱c(diǎn)都在曲線(為參數(shù),是與無關(guān)的正常數(shù))上,對(duì)應(yīng)參數(shù)分別為與,為的中點(diǎn).
(1)求的軌跡的參數(shù)方程;
(2)作一個(gè)伸壓變換:,求出動(dòng)點(diǎn)點(diǎn)的參數(shù)方程,并判斷動(dòng)點(diǎn)的軌跡能否過點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時(shí)測(cè)得公路北側(cè)遠(yuǎn)處一山頂D在西偏北的方向上,仰角為,行駛4km后到達(dá)B處,測(cè)得此山頂在西偏北的方向上.
(1)求此山的高度(單位:km);
(2)設(shè)汽車行駛過程中仰望山頂D的最大仰角為,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com