A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根據(jù)定義,令x1•x2=2×8=16,當x1∈[2,8]時,選定x2=$\frac{16}{{x}_{1}}$∈[2,8],可得C的值.
解答 解:根據(jù)定義,函數(shù)y=f(x),x∈D,
若存在常數(shù)C,對任意的x1∈D,存在唯一的x2∈D,
使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=C,則稱函數(shù)f(x)在D上的均值為C.
令x1•x2=2×8=16,
當x1∈[2,8]時,選定x2=$\frac{16}{{x}_{1}}$∈[2,8]
可得:C=$\frac{1}{2}$log2(x1x2)=2,
故選:B.
點評 這種題型可稱為創(chuàng)新題型或叫即時定義題型.關鍵是要讀懂題意.充分利用即時定義來答題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | C. | 奇函數(shù)或偶函數(shù) | D. | 非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=lgx2,g(x)=2lg|x| | B. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ | ||
C. | f(x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$•\sqrt{x-2}$ | D. | f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x<-1}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1,-1 | B. | -1 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | (-∞,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com