精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
(
1
2
)x(x≤0)
1-3x(x>0)
則f(f(-1))=
-5
-5
分析:本題考查的分段函數的函數值,由函數解析式,我們可以先計算f(-1)的值,再根據f(-1)的值或范圍,代入相應的解析式求出最后的結果.
解答:解:∵-1≤0,∴f(-1)=(
1
2
)-1=2,
而f(2)=1-3×2=-5
所以f(f(-1))=f(2)=-6
故答案為:-5
點評:本題考查分段函數求函數值,按照由內到外的順序逐步求解.要確定好自變量的取值或范圍,再代入相應的解析式求得對應的函數值
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數,則實數a的取值范圍是(  )
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
|x-1|-a
1-x2
是奇函數.則實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x-1x+a
+ln(x+1)
,其中實數a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調性.

查看答案和解析>>

同步練習冊答案