如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N分別為A1B,B1C1的中點(diǎn).
(1)求證BC∥平面MNB1
(2)求證平面A1CB⊥平面ACC1A1
分析:(1)由直三棱柱的幾何特征,易得直三棱柱ABC-A1B1C1中,BC∥B1C1,然后由線面平行的判定定理得到BC∥平面MNB1;
 (2)先由BC⊥AC,ABC-A1B1C1為直三棱柱,可得CB⊥平面ACC1A1,利用面面垂直的判定定理可得平面A1CB⊥平面ACC1A1
解答:證明:(1)∵BC∥B1C1,且B1C1?平面MNB1,BC?平面MNB1
∴BC∥平面MNB1;
(2)∵BC⊥AC,ABC-A1B1C1為直三棱柱
∴CB⊥平面ACC1A1
∵BC?平面A1CB
∴平面A1CB⊥平面ACC1A1
點(diǎn)評:本題考查的知識點(diǎn)是平面與平面垂直的判定,直線與平面平行的判定,熟練掌握直三棱柱的幾何特征,熟練掌握空間直線與平面之間位置的判定、性質(zhì)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對角線交于點(diǎn)D,B1C1的中點(diǎn)為M,求證:CD⊥平面BDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點(diǎn),E為B1C的中點(diǎn).
(1)求直線BE與A1C所成的角;
(2)在線段AA1中上是否存在點(diǎn)F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分別為AC,B1C1的中點(diǎn).
(Ⅰ)求線段MN的長;
(Ⅱ)求證:MN∥平面ABB1A1
(Ⅲ)線段CC1上是否存在點(diǎn)Q,使A1B⊥平面MNQ?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中點(diǎn).
(Ⅰ)證明:A1C1∥平面ACD;
(Ⅱ)求異面直線AC與A1D所成角的大小;
(Ⅲ)證明:直線A1D⊥平面ADC.

查看答案和解析>>

同步練習(xí)冊答案