(2013•寧波二模)設等差數(shù)列{an}的前n項和為Sn,若S3≤3,S4≥4,S5≤10,則a6的最大值是
8
8
分析:設出等差數(shù)列的首項和公差,由S3≤3,S4≥4,S5≤10,列式求出公差的范圍,再由S4≥4,S5≤10得到a5的范圍,則a6的最大值可求.
解答:解:設等差數(shù)列{an}的首項為a1,公差為d,
由S3≤3,得:3a1+3d≤3,即a1≤1-d①
由S4≥4,得4a1+6d≥4,即a1≥1-
3
2
d

由S5≤10,得5a1+10d≤10,即a1≤2-2d③
由①②得:1-
3
2
d≤1-d
,所以d≥0.
由②③得:1-
3
2
d≤2-2d
,所以d≤2.
又S4≥4,S5≤10,所以a5≤6.
而d≤2,所以a6≤8.
所以a6的最大值是8.
故答案為8.
點評:本題考查了等差數(shù)列的前n項和,考查了等差數(shù)列的性質(zhì),解答的關鍵是利用兩邊夾的方法求出公差d的范圍,此題是基礎題題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)設公比大于零的等比數(shù)列{an}的前n項和為Sn,且a1=1,S4=5S2,數(shù)列{bn}的前n項和為Tn,滿足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設Cn=(Sn+1)(nbn-λ),若數(shù)列{Cn}是單調(diào)遞減數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)設函數(shù)f(x)的導函數(shù)為f′(x),對任意x∈R都有f′(x)>f(x)成立,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)已知函數(shù)f(x)=a(x-1)2+lnx.a(chǎn)∈R.
(Ⅰ)當a=-
1
4
時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈[1,+∞)時,函數(shù)y=f(x)圖象上的點都在不等式組
x≥1
y≤x-1
所表示的區(qū)域內(nèi),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)如圖是某學校抽取的n個學生體重的頻率分布直方圖,已知圖中從左到右的前3個小組的頻率之比為1:2:3,第3個小組的頻數(shù)為18,則的值n是
48
48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)已知兩非零向量
a
,
b
,則“
a
b
=|
a
||
b
|”是“
a
b
共線”的( 。

查看答案和解析>>

同步練習冊答案