A. | $\frac{{y}^{2}}{2}-\frac{{x}^{2}}{3}$=1 | B. | y2-$\frac{{x}^{2}}{4}$=1 | C. | $\frac{{y}^{2}}{4}$-x2=1 | D. | $\frac{{y}^{2}}{3}-\frac{{x}^{2}}{2}$=1 |
分析 由題意可知:P到準(zhǔn)線的距離即為P到焦點(diǎn)的距離為|PF|,可得|PF|+|PF1|的最小值為$\sqrt{6}$,當(dāng)P,F(xiàn),F(xiàn)1三點(diǎn)共線,可得最小值|FF1|=$\sqrt{1+{c}^{2}}$=$\sqrt{6}$,即可求得c,根據(jù)橢圓的離心率即可求得a和b的值,求得雙曲線方程.
解答 解:拋物線y2=4x的焦點(diǎn)F(1,0),準(zhǔn)線的方程為x=-1,
曲線C:$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{^{2}}$=1的離心率e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,
由P到雙曲線C的上焦點(diǎn)F1(0,c)的距離與到直線x=-1的距離之和的最小值為$\sqrt{6}$,
由拋物線的定義可得P到準(zhǔn)線的距離即為P到焦點(diǎn)的距離為|PF|,
可得|PF|+|PF1|的最小值為$\sqrt{6}$,
當(dāng)P,F(xiàn),F(xiàn)1三點(diǎn)共線,可得最小值|FF1|=$\sqrt{1+{c}^{2}}$=$\sqrt{6}$,
即有c=$\sqrt{5}$,
由c2=a2+b2,
解得a=2,b=1,
即有雙曲線的方程為$\frac{{y}^{2}}{4}$-x2=1.
故選:C.
點(diǎn)評(píng) 本題考查雙曲線的簡單幾何性質(zhì),拋物線的定義,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$-1 | B. | $\frac{3+\sqrt{5}}{2}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com