某人用數(shù)學(xué)歸納法證明<n+1(n∈N)的過(guò)程如下.

證 ①當(dāng)n=1時(shí),<1+1不等式成立;

②假設(shè)n=k(k∈N)時(shí)不等式成立,即<k+1,那么n=k+1時(shí),=(k+1)+1.∴n=k+1時(shí),不等式成立,上述證法

[  ]

A.過(guò)程全部正確      B.n=1驗(yàn)證不正確

C.歸納假設(shè)不正確      D.從“n=k到n=k+1”的推證不正確

答案:D
解析:

化簡(jiǎn)錯(cuò)誤。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

某人用數(shù)學(xué)歸納法證明<n+1(n∈N*)的過(guò)程如下.

證 ①當(dāng)n=1時(shí),<1+1不等式成立;

  

②假設(shè)n=k(k∈N)時(shí)不等式成立,即<k+1,那么n=k+1時(shí),=(k+1)+1.∴n=k+1時(shí),不等式成立,上述證法

[  ]

A.過(guò)程全部正確      B.n=1驗(yàn)證不正確

C.歸納假設(shè)不正確      D.從“n=k到n=k+1”的推證不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

某人用數(shù)學(xué)歸納法證明命題

<n+1(n∈N)的過(guò)程如下:

(1)當(dāng)n=1時(shí), 不等式顯然成立.

(2)假設(shè)n=k時(shí), 有<k+1

那么n=k+1時(shí), =(k+1)+1.

所以n=k+1時(shí)不等式成立. 由(1), (2), ∴對(duì)n∈N不等式成立.這種證法的主要錯(cuò)誤在于

[  ]

A.當(dāng)n=1時(shí), 驗(yàn)證過(guò)程不具體.

B.歸納假設(shè)的寫(xiě)法不正確.

C.從k到k+1的推理不嚴(yán)密.

D.從k到k+1的推理過(guò)程沒(méi)使用歸納假設(shè).

查看答案和解析>>

同步練習(xí)冊(cè)答案