【題目】在如圖所示的三棱柱中,平面,,,的中點為,若線段上存在一點使得平面.
(1)求的長;
(2)求二面角的大小.
科目:高中數(shù)學 來源: 題型:
【題目】設是橢圓上的點,是焦點,離心率.
(1)求橢圓的標準方程;
(2)設是橢圓上的兩點,且,問線段的垂直平分線是否過定點?若過定點,求出此定點的坐標,若不過定點,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線的焦點作直線交拋物線于兩點,已知點,為坐標原點.若的最小值為3.
(1)求拋物線的方程;
(2)過點作直線,交拋物線于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)的部分圖象,將函數(shù)f(x)的圖象向右平移個單位長度得到g(x)的圖象,給出下列四個命題:
①函數(shù)f(x)的表達式為;
②g(x)的一條對稱軸的方程可以為;
③對于實數(shù)m,恒有;
④f(x)+g(x)的最大值為2.其中正確的個數(shù)有( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性及最值;
(2)若a>0,且對x1,x2∈[0,2],f(x1+1)≥g(x2)+a﹣1恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.
(Ⅰ)解不等式f(x)>9;
(Ⅱ)x1∈R,x2∈R,使得f(x1)=g(x2),求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知,.
(Ⅰ)求出的值;
(Ⅱ)已知變量,具有線性相關關系,求產(chǎn)品銷量(件)關于試銷單價(元)的線性回歸方程;
(Ⅲ)用表示用(Ⅱ)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求“好數(shù)據(jù)”至少有一個的概率.
(參考公式:線性回歸方程中,的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),是的導函數(shù),且,.
(1)求的解析式,并判斷零點的個數(shù);
(2)若,且對任意的恒成立,求k的最大值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,如果與都是整數(shù),就稱點為整點,下列命題中正確的是_____________(寫出所有正確命題的編號)
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果與都是無理數(shù),則直線不經(jīng)過任何整點
③直線經(jīng)過無窮多個整點,當且僅當經(jīng)過兩個不同的整點
④直線經(jīng)過無窮多個整點的充分必要條件是:與都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com