【題目】過拋物線的焦點作直線交拋物線于兩點,已知點,為坐標(biāo)原點.的最小值為3.

(1)求拋物線的方程;

(2)過點作直線,交拋物線于兩點,求的取值范圍.

【答案】1,(2

【解析】

1)利用拋物線的定義,通過數(shù)形結(jié)合分析得到最小值即為點M到準線的距離解方程即得拋物線的方程;(2)可設(shè)直線AB方程為,求出,再利用基本不等式得解.

1

由題得點是拋物線的準線,

因為A是拋物線上的動點,由拋物線的定義可知,|AF|=(動點A到準線的距離),

p>2,所以當(dāng)x=1時,,所以定點M1,2)在拋物線的內(nèi)部,

過點M作準線的垂線,垂足為N,交拋物線于點點,

當(dāng)動點A取點時,|AF|+|AM|此時最小,最小值即為點M到準線的距離.

2)由題得此時直線AB的斜率存在,可設(shè)直線AB方程為,

直線CD方程為:,

把直線AB的方程和拋物線的方程聯(lián)立得:

設(shè)

所以

同理可得

所以原式=,

當(dāng)且僅當(dāng)時取等,所以的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)個零點,求的取值范圍;

(2)若有兩個極值點,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱柱中,側(cè)棱底面,,,,

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為(其中為自然對數(shù)的底數(shù)),的導(dǎo)函數(shù)。

(1)求的值;

(2)任取兩個不等的正數(shù),且,若存在正數(shù),使得成立。求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為解決城市的擁堵問題,某城市準備對現(xiàn)有的一條穿城公路MON進行分流,已知穿城公路MON自西向東到達城市中心后轉(zhuǎn)向方向,已知∠MON=,現(xiàn)準備修建一條城市高架道路L,L在MO上設(shè)一出入口A,在ON上設(shè)一出口B,假設(shè)高架道路L在AB部分為直線段,且要求市中心與AB的距離為10km.

(1)求兩站點A,B之間的距離;

(2)公路MO段上距離市中心30km處有一古建筑群C,為保護古建筑群,設(shè)立一個以C為圓心,5km為半徑的圓形保護區(qū).因考慮未來道路AB的擴建,則如何在古建筑群和市中心之間設(shè)計出入口A,才能使高架道路及其延伸段不經(jīng)過保護區(qū)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)).在以坐標(biāo)原點為極點,以軸正半軸為極軸建立的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,曲線的直角坐標(biāo)方程為.

(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線分別相交于異于原點的點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點,,.

I)證明:;

II)求直線與平面所成角的正弦值;

III)在邊上是否存在點,使所成角的余弦值為,若存在,確定點位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的三棱柱中,平面,,的中點為,若線段上存在一點使得平面.

1)求的長;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運動健康已成為大家越來越關(guān)心的話題,某公司開發(fā)的一個類似計步數(shù)據(jù)庫的公眾號.手機用戶可以通過關(guān)注該公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的PK和點贊.現(xiàn)從張華的好友中隨機選取40人(男、女各20人),記錄他們某一天行走的步數(shù),并將數(shù)據(jù)整理如表:

步數(shù)

性別

02000

20015000

50018000

800110000

10000

1

2

4

7

6

0

3

9

6

2

1)若某人一天行走的步數(shù)超過8000步被評定為“積極型”,否則被評定為“懈怠型”,根據(jù)題意完成下列2×2列聯(lián)表,并據(jù)此判斷能否有90%的把握認為男、女的“評定類型”有差異?

積極型

懈怠型

總計

總計

2)在張華的這40位好友中,從該天行走的步數(shù)不超過5000步的人中隨機抽取2人,設(shè)抽取的女性有X人,求X=1時的概率.

參考公式與數(shù)據(jù):

PK2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=,其中n=a+b+c+d

查看答案和解析>>

同步練習(xí)冊答案