【題目】如圖,平面分別是上的動點,且.
(1)若平面與平面的交線為,求證:;
(2)當平面平面時,求平面與平面所成的二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質(zhì)定理即可得證;
(2)以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,利用空間向量法求出二面角的余弦值;
解:(1)由,
又平面,平面,所以平面.
又平面,且平面平面,
故.
(2)因為平面,所以,又,所以平面,
所以,又,所以.
若平面平面,則平面,所以,
由且,
又,所以.
以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,
則 ,,設(shè)
則
由,可得,,即,所以可得,所以,
設(shè)平面的一個法向量為,則
,,,取,得
所以
易知平面的法向量為,
設(shè)平面與平面所成的二面角為,
則,
結(jié)合圖形可知平面與平面所成的二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))
(1)求的值;
(2)若,且對任意恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國鐵路總公司相關(guān)負責人表示,到2018年底,全國鐵路營業(yè)里程達到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是( )
A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著
B.從2014年到2018年這5年,高鐵運營里程與年價正相關(guān)
C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上
D.從2014年到2018年這5年,高鐵運營里程數(shù)依次成等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)X~N(1,σ2),其正態(tài)分布密度曲線如圖所示,且P(X≥3)=0.0228,那么向正方形OABC中隨機投擲10000個點,則落入陰影部分的點的個數(shù)的估計值為( )
(附:隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A. 6038 B. 6587 C. 7028 D. 7539
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點,為平面內(nèi)一動點,以線段為直徑的圓內(nèi)切于圓,設(shè)動點的軌跡為曲線.
(1)求曲線的標準方程;
(2)已知過坐標原點的直線交曲線于、兩點,若在曲線上存在點,使得,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線與軸平行,求;
(2)已知在上的最大值不小于,求的取值范圍;
(3)寫出所有可能的零點個數(shù)及相應(yīng)的的取值范圍.(請直接寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)且.
(Ⅰ)若函數(shù)在處取得極值,求實數(shù)的值.
(Ⅱ)若函數(shù)不存在零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com