分析 (1)b=-1時(shí),f(x)=x2-(a+1)x-1,由f(0)=-1,f(x)在[2,3]有一個(gè)零點(diǎn),則$\left\{\begin{array}{l}{f(2)≤0}\\{f(3)≥0}\end{array}\right.$,解出即可得出.
(2)令g(a)=(1-x)a+x2-x,a∈[2,3],看做一次函數(shù),利用單調(diào)性即可得出.
解答 解:(1)b=-1時(shí),f(x)=x2-(a+1)x-1,
∵f(0)=-1,若f(x)在[2,3]有一個(gè)零點(diǎn),則$\left\{\begin{array}{l}{f(2)≤0}\\{f(3)≥0}\end{array}\right.$,得出$\frac{1}{2}≤a≤\frac{5}{3}$.
∴a的取值范圍是$\frac{1}{2}≤a≤\frac{5}{3}$.
(2)令g(a)=(1-x)a+x2-x,a∈[2,3],
∵g(a)<0,∴$\left\{\begin{array}{l}g(2)<0\\ g(3)<0\end{array}\right.$,
得出:1<x<2.
點(diǎn)評(píng) 本題考查了二次函數(shù)與一次函數(shù)的性質(zhì)、不等式的性質(zhì),考查了轉(zhuǎn)化能力、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 線段 | B. | 圓 | C. | 橢圓 | D. | 雙曲線 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com