【題目】(1)若函數(shù)f(x)=ax2-x-1有且僅有一個零點, 求實數(shù)a的值.

(2)若函數(shù)f(x)=|4x-x2|+a有4個零點,求實數(shù)a的取值范圍.

【答案】(1) a=0或a=.

(2)(-4,0).

【解析】分析:(1)當(dāng)有唯一零點符合題意;當(dāng)有唯一零點有唯一解,則,綜合可得答案;

(2)設(shè),畫出函數(shù)圖象,數(shù)形結(jié)合可得實數(shù)的取值范圍.

詳解(1)若a=0,則f(x)=-x-1,令f(x)=0,即-x-1=0,得x=-1,故符合題意;

若a≠0,則f(x)=ax2-x-1是二次函數(shù),

故有且僅有一個零點等價于Δ=1+4a=0,

解得a=,

綜上所述a=0或a=.

(2)若f(x)=|4x-x2|+a有4個零點,

即|4x-x2|+a=0有四個根,即|4x-x2|=-a有四個根.

令g(x)=|4x-x2|,h(x)=-a.

作出g(x)的圖象,由圖象可知如果要使|4x-x2|=-a有四個根,

那么g(x)與h(x)的圖象應(yīng)有4個交點.故需滿足0<-a<4,即-4<a<0.

所以a的取值范圍是(-4,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時,求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱(底面為正三角形的直棱柱)ABC-A1B1C1中,已知AB=AA1=2,點QBC的中點.

(Ⅰ)求證:平面平面;

(Ⅱ)求點到平面AQC1的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的奇偶性,并說明理由;

(2)若對任意實數(shù)恒成立,求實數(shù)的取值范圍;

(3)若上有最大值9,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】行駛中的汽車,在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離,在某種路面上,某種型號的汽車的剎車距離sm)與汽車的車速vm/s)滿足下列關(guān)系:n為常數(shù),且),做了兩次剎車實驗,發(fā)現(xiàn)實驗數(shù)據(jù)如圖所示其中

(1)求出n的值;

(2)要使剎車距離不超過12.6米,則行駛的最大速度應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x3﹣3x+c的圖象與x軸恰有兩個公共點,則c=( )
A.﹣2或2
B.﹣9或3
C.﹣1或1
D.﹣3或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,從A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)這6個點中隨機選取3個點,將這3個點及原點O兩兩相連構(gòu)成一個“立體”,記該“立體”的體積為隨機變量V(如果選取的3個點與原點在同一個平面內(nèi),此時“立體”的體積V=0).

(1)求V=0的概率;

(2)求V的分布列及數(shù)學(xué)期望E(V).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集I=1,2,3,45,6},集合A,B都是I的子集,若AB=13,5},則稱AB理想配集,記作(AB),問這樣的理想配集A,B)共有( )

A. 7B. 8C. 27D. 28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的拋物線方程:

(1)過點(-2,3);

(2)焦點在x軸上,此拋物線上的點A(4,m)到準(zhǔn)線的距離為6.

查看答案和解析>>

同步練習(xí)冊答案