5.把38化為二進位制數(shù)為100110(2)

分析 利用“除k取余法”是將十進制數(shù)除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.

解答 解:38÷2=19…0
19÷2=9…1
9÷2=4…1
4÷2=2…0
2÷2=1…0
1÷2=0…1
故38(10)=100110(2)
故答案為:100110(2)

點評 本題考查的知識點是十進制與其它進制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.集合{1,2,3,4}的真子集共有( 。
A.7個B.8個C.15個D.16個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知f(x)是奇函數(shù),滿足f(x+2)=-f(x),f(1)=2,則f(2015)+f(2016)=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x+$\frac{1}{2}$|+a|x-$\frac{3}{2}$|.
(1)當a=-1時,解不等式f(x)≤3x;
(2)當a=2時,若關(guān)于x的不等式4f(x)<2|1-b|的解集為空集,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖1,有一建筑物OP,為了測量它的高度,在地面上選一基線AB,設(shè)其長度為d,在A點處測得P點的仰角為α,在B點處測得P點的仰角為β.
(1)若AB=40,α=30°,β=45°,且∠AOB=30°,求建筑物的高度h;
(2)經(jīng)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)將基線AB調(diào)整到線段AO上(如圖2),α與β之差盡量大時,可以
提高測量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=$\frac{4}95ljsqz$,建筑物的實際高度為21,試問d為何值時,β-α最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.長方形ABCD中,AB=2,BC=1,E為CD的中點,則$\overrightarrow{AC}$•$\overrightarrow{BE}$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知集合A={x|x2-x-12<0},集合B={x|x2+2x-8>0},集合C={x|x2-4ax+3a2<0}(a>0).
(Ⅰ)求 A∩(∁RB);
(Ⅱ)若C?(A∩B),試確定正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.動圓:(x-2m)2+(y+5m)2=9的圓心軌跡方程為5x+2y=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知直角△ABC的頂點A的坐標為(-2,0),直角頂點B的坐標為(1,$\sqrt{3}$),頂點C在x軸上.
(1)求邊BC所在直線的方程;
(2)求直線△ABC的斜邊中線所在的直線的方程.

查看答案和解析>>

同步練習冊答案